跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊哲銘
Che-ming Yang
論文名稱: 非線性破壞準則之臨界楔模型
Critical taper model with a nonlinear failure criterion
指導教授: 董家鈞
Jia-jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 臨界楔模型破壞準則地質強度指標褶皺逆衝帶增積岩楔
外文關鍵詞: Accretionary wedge., Fold-and-thrust belt, Geological strength index, Hoek and Brown failure criterion, Critical taper model
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由臨界楔形體模型可得楔形體及其基底滑脫面之強度與楔形體形貌之關聯性,根據臨界楔之臨界角,即可反衍楔形體與基底滑脫面之強度參數。本研究將非線性Hoek and Brown破壞準則引入臨界楔模型中,使楔形體強度遵守非線性準則,因此,臨界角將隨楔形體厚度變化而變化。研究結果發現,楔形體強度隨楔形體厚度增加而下降,且臨界角將隨之增大,但增加幅度將隨厚度增加逐漸趨緩。本研究藉由台灣三個褶皺逆衝帶剖面進行模型驗證,經由輸入合理參數值以及計算所得之臨界角,結果顯示模型計算與剖面觀察相符。利用參數敏感性分析得知,強度參數中以地質強度指標、基底滑脫面摩擦係數與基底滑脫面孔隙水壓比對本模型之影響程度較明顯。研究結果顯示,本文建議的非線性Hoek and Brown破壞準則之臨界楔模型,除了可考慮臨界楔厚度影響之外,亦可根據野外調查所得之岩體強度指標,合理的推估楔形體之強度,免除原臨界楔模型決定岩體抗剪摩擦角之困擾。


    This study incorporates the nonlinear Hoek and Brown failure criterion into the critical taper model to evaluate the variation of the taper angle of thrust belt with changes of wedge thickness. From collected wedge profile found wedge geometry about three types of morphology were fixed angle, convex upward and concave upward. Because the lateral pore pressure changes at the wedge and the detachment, and formation strength (GSI) change at the wedge, as well as effect of non-linear wedge strength. The wedge strength will decrease with the increasing of wedge thickness. Accordingly, the taper angle increases with the increasing of wedge thickness. Based on the parameter study, the basal coefficient of friction, the basal Hubbert-Rubey pore-fluid pressure ratio on the detachment fault and the Geological Strength Index of the wedge dominate the relation between wedge thickness and taper angle. Therefore, the nonlinearity of wedge strength should be considered for evaluating the mechanical characteristics of thrust belt wedge.

    中文摘要 ................................................................................................................ i 英文摘要 ............................................................................................................... ii 誌謝 ...................................................................................................................... iii 目錄 ...................................................................................................................... iv 圖目錄 .................................................................................................................. vi 表目錄 ................................................................................................................... x 符號說明 ............................................................................................................. xii 第一章 緒論 ................................................................................................... 1 1.1 研究動機與目的 ............................................................................... 1 1.2 研究流程 ........................................................................................... 4 1.3 論文架構 ........................................................................................... 6 第二章 文獻回顧 ........................................................................................... 7 2.1 褶皺逆衝帶與增積岩楔之推土機模型 ........................................... 7 2.2 臨界楔之砂箱模型 ......................................................................... 13 2.3 非線性之破壞準則 ......................................................................... 15 2.4 地質強度指標(GSI)之評估方法 .................................................... 21 第三章 模式推導與驗證 ............................................................................. 31 3.1 非線性破壞準則之臨界楔模型 ..................................................... 31 3.2 地質強度指標GSI之野外調查 .................................................... 32 3.3 剖面分析與模型驗證 ..................................................................... 35 第四章 參數敏感度分析與模式應用 ......................................................... 39 4.1 模式參數對臨界角之影響 ............................................................. 39 4.2 楔形體厚度對臨界角之影響 ......................................................... 41 4.3 非線性破壞準則臨界楔模型之應用 ............................................. 43 第五章 結論與建議 ..................................................................................... 45 5.1 結論 ................................................................................................. 45 5.2 建議 ................................................................................................. 45 參考文獻 ............................................................................................................. 46 附錄A 世界各地褶皺逆衝帶與增積岩體剖面蒐集 ................................. 51 附錄B 方程式推導過程 ............................................................................. 60 附錄C GSI野外調查記錄 ......................................................................... 63

    [1] Dahlen, F. A., 1990, Critical taper model of fold-and-thrust belts and accretionary wedges, Annual Review of Earth and Planetary Sciences, v.18, p. 55-99.
    [2] Suppe, J., 2007, Absoulte fault and crustal strength from wedge tapers, Geology, v. 35, no.12, p. 1127-1130.
    [3] Yue, L. F., 2007, Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures, Ph. D. thesis, Princeton, New Jersey, Princeton University, 173 p.
    [4] Moore, J. C., Biju-Duval, B., Bergen, J. A., Blackington, G., Claypool, G. E., Cowan, D. S., Duennebier, F., Guerra, R. T., Hemleben, C. H. J., Hussong, D., Marlow, M. S., Natland, J. H., Pudsey, C. J., Renz, G. W., Trady, M., Willis, M. E., Wilson, D. and Wright, A. A., 1982, Offscraping and underthrusting of sediment at the deformation front of the Barbados Ridge: Deep Sea Drilling Project Leg 78A, Geological Society of America Bulletin, v. 93, p. 1065-1077.
    [5] Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D. W., ten Brink, U., Tréhu, A. M. and Vidal, N., 1998, New seismic images of the Cascadia subduction zone from cruise SO108 —ORWELL, Tectonophysics, v. 293, p. 69-84.
    [6] Hoek, E. and Brown, E.T., 1980, Underground excavations in rock, London: Institution of Mining and Metallurgy, 527 p.
    [7] Hoek, E., Torres, C. T. and Corkum, B., 2002, Hoek-Brown failure criterion: 2002 edition, Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, p. 1-6.
    [8] Davis, D., Suppe, J. and Dahlen, F. A., 1983, Mechanics of fold- and-thrust belt and accretionary wedges, Journal of Geophysical Research, v. 88, no. B2, p. 1153-1172.
    [9] Dahlen, F. A., Suppe, J. and Davis, D., 1984, Mechanics of fold-and-thrust belt and accretionary wedges: Cohesive coulomb theory, Journal of Geophysical Research, v. 89, no. B12, p. 10087-10101.
    [10] Hubbert, M. K. and Rubey, W. W., 1959, Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting, Bulletin of the Geological Society of America, v. 70, p. 115-166.
    [11] Davis, D. M., 1978, The mechanics of thrust faults: A sand box model, B. S. thesis, Princeton, New Jersey, Princeton University, 53 p.
    [12] Agarwal, K. K. and Agarwal, G. K., 2002, Analogue sandbox models of thrust wedges with variable basal frictions, Gondwana Research, v. 5, no. 3, p. 641-647.
    [13] Koyi, H. A. and Vendeville, B. C., 2003, The effect of décollement dip on geometry and kinematics of model accretionary wedges, Journal of Structural Geology, v. 25, p. 1445-1450.
    [14] Hoek, E. and Brown, E. T. 1980, Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, ASCE v. 106, n. GT9, p. 1013-1035.
    [15] Bieniawski, Z. T., 1989, Engineering Rock Mass Classifications, Wiley, New York, 251p.
    [16] Hoek, E. and Brown, E. T. 1988. The Hoek-Brown failure criterion - a 1988 update, Proc. 15th Canadian Rock Mech. Symp. (ed. J. H. Curran), Toronto: Civil Engineering Depterment, University of Toronto, p. 31-38.
    [17] Hoek, E., Wood, D. and Shah, S. 1992. A modified Hoek-Brown criterion for jointed rock masses, Proceedings of the International ISRM Symposium on Rock Characterization, Chester, UK, p. 209-213.
    [18] Hoek, E., 1994, Strength of rock and rock masses, ISRM News Journal, v. 2, no. 2, p. 4-16.
    [19] Hoek, E., Kaiser, P. K. and Bawden. W. F., 1995, Support of underground
    excavations in hard rock, Rotterdam: Balkema, 215p.
    [20] Hoek, E. and Brown, E. T. 1997, Practical estimates of rock mass strength, International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, v. 34, no. 8, p. 1165-1186.
    [21] Barton, N. R., 1974, A review of the shear strength of filled discontinuities in rock, Norwegian Geotechnical Institute Publication, no. 105, Oslo: Norwegian Geotechnical Institute, p. 1-30.
    [22] Hoek, E., Marinos, P. and Benissi, M., 1998, Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation, Bulletin of Engineering Geology and the Environment, v. 57, no. 2, p. 151-160.
    [23] Marinos, P. and Hoek, E., 2000, GSI: A geologically friendly tool for rock mass strength estimation, Proceedings GeoEng2000 Conference, Melbourne, p. 1422-1442.
    [24] Marinos, P. and Hoek, E., 2001, Estimating the geotechnical properties of heterogeneous rock masses such as flysch, Bulletin of the Engineering Geology and the Environment (IAEG), v. 60, p. 85-92.
    [25] Marinos, V., Marinos, P. and Hoek, E., 2005, The geological strength index: applications and limitations, Bulletin of the Engineering Geology and the Environment, v. 64, p. 55-65.
    [26] Sonmez, H. and Ulusay, R., 1999, Modifications to the geological strength index (GSI) and their applicability to stability of slopes, International Journal of Rock Mechanics & Mining Sciences, v. 36, p. 743–60.
    [27] Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y. and Minami, M., 2004, Estimation of rock mass strength and deformation modulus of jointed hard rock masses using the GSI system, International Journal of Rock Mechanics & Mining Sciences, v. 41, no. 1, p. 3–19.
    [28] Tzamos, S. and Sofianos, A. I., 2007, A correlation of four rock mass classification systems through their fabric indices, International Journal of
    Rock Mechanics & Mining Sciences, v. 44, p. 477–495.
    [29] Palmström, A., 2000, Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technique, v. 6, no. 1, p. 1-19.
    [30] Palmström, A., 1995, RMi—a rock mass characterization system for rock engineering purposes, Ph. D. thesis, University of Oslo, Norway, 400 p.
    [31] 俞旗文、李國榮,1995,台灣第三系岩石之力學特性研究,第六屆大地工程學術研究討論會,第一卷,第675-682頁。
    [32] Morrow, C. A., Moore, D. E. and Lockner, D. A., 2000, The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophysical Research Letters, v. 27 p. 815-818.
    [33] Suppe, J. and Namson, J., 1979, Fault-bend orgin of frontal folds of the Western Taiwan fold-and-thrust belt, Petroleum Geology of Taiwan, no, 16, p. 1-18.
    [34] Di Toro, G., Hirose, T., Nielsen, S. and Shimamoto, T., 2007, Relating high-velocity rock-frictionexperiments to coseismic slip in the presence of melts, AGU Monograph 170, Earthquakes: Radiated energy and the physics of faulting, p. 121-134.
    [35] Di Toro, G., Han, R., Hirose, T., Nielsen, S., Mizoguchi, K., De Paola, N. and Shimamoto, T., 2009, Fault heating and lubrication during earthquake: Experimental constraints, Conference in Commemoation of 10th Anniversary of the 1999 Chi-Chi Earthquake, Taiwan, p. 46-51.
    [36] Byerlee, J. D., 1978, Friction of rocks, Pure and Applied Geophysics, v. 116, p. 615-626.
    [37] 羅偉、吳樂群、陳華玫,1999,五萬分之一台灣地質圖說明書,圖幅第25號:國姓,經濟部中央地質調查所。
    [38] 何信昌、陳勉銘,2000,五萬分之一台灣地質圖說明書,圖幅第24號:台中,經濟部中央地質調查所。
    [39] 劉桓吉、李錦發、紀宗吉,2004,五萬分之一台灣地質圖說明書,圖幅第38號:雲林,第二版,經濟部中央地質調查所。
    [40] von Huene, R., Moore, G. W. and Moore J. C., 1979, Cross section, Alaska Peninsula-Kodiak Island-Aleutian Trench: Geological Society of America Map and Chart Series MC-28A, scale 1:250,000.
    [41] Delaney, J. R., Johnson, H. P. and Karsten, J. L., 1981, The Juan de Fuca hotspot-propagating rift system: New tectonic, geochemical and magnetic data, Journal of Geophysical Research, v. 86, p. 11747–11750.
    [42] Sinton, J. M. and Detrick, R. S., 1992, Mid-ocean ridge magma chambers, Journal of Geophysical Research, v. 97, p. 197–216.
    [43] Applegate, T. B., Goldfinger, C., MacKay, M. E., Kulm, L. D., Fox, C. G., Embley, R. W. and Meis, P. J., 1992, A left-lateral strike-slip fault seaward of the central Oregon convergent margin, Tectonics, v. 11, p. 465–477.
    [44] Underwood, M. B., Moore, G. F., Taira A, Klaus, A., Wilson, M. E. J., Fergusson, C. L., Hirano, S., Steurer, J. and the leg 190 shipboard scientific party, 2003, Sedimentary and tectonic evolution of a trench-slope basin in the Nankai subduction zone of southwest Japan, Journal of Sedimentary Research, v. 73, no. 4, p. 589–602.
    [45] Taira, A., Hill, I., Firth, J., Berner, U., Brückmann, W., Byrne, T., Chabernaud, T., Fisher, A., Foucher, J.-P., Gamo, T., Gieskes, J., Hyndman, R., Karig, D., Kastner, M., Kato, Y., Lallemant, S., Lu, R., Maltman, A., Moore, G., Moran, K., Olaffson, G., Owens, W., Pickering, K., Siena, F., Taylor, E., Underwood, M., Wilkinson, C., Yamano, M. and Zhanf, J., 1992, Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: Synthesis of shipboard results of ODP Leg 131, Earth and Planetary Science Letters, v. 109, p. 431-450.

    QR CODE
    :::