跳到主要內容

簡易檢索 / 詳目顯示

研究生: 董書豪
Shu-Hao Dong
論文名稱: 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析
Modeling Advanced Combination Encoder Combined Acoustic Hearing For Chinese Speaking Patients Using Cochlear Implants
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 連續交替編碼策略進階結合編碼策略助聽器人工電子耳
外文關鍵詞: Cochlear implant, Hearing aid, Advanced Combination Encoders, Continuous Interleaved Sampling
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在利用進階結合編碼策略來模擬人工電子耳並結合以低頻語音訊號所模擬的助聽器對中文語音辨識率的影響並且和臨床實驗結果做比較。臨床研究指出人工電子耳使用者若能結合低頻語音訊息,則能在中文語音辨識上獲得助益。同樣的結果也在本實驗室先前的連續交替編碼策略研究中獲得驗證。但因為現在普遍人工電子耳配戴者大都使用進階結合編碼策略,所以在和先前實驗相同實驗環境下將語言策略更換為進階結合編碼策略進行實驗。本研究在5位正常聽力者(NH)身上實驗下列三種不同情況:(1)使用訊雜比+4dB語料經過人工電子耳進階結合編碼策略處理後之語音訊號,單耳播放給受測者聆聽(2)使用訊雜比+4dB語料經過人工電子耳進階結合編碼策略處理後之語音訊號,混和低於500Hz之原始語料低頻訊息後,單耳播放給受測者聆聽。(3)使用訊雜比+4dB語料經過人工電子耳進階結合編碼策略處理後之語音訊號,結合側耳低於500Hz之原始語料低頻訊息後,以雙耳聽方式播放給受測者聆聽。其結果並和實際使用進階結合編碼策略之人工電子耳配戴者做一比較。初步結果顯示,雙耳聽在五位正常聽力者上單字及聲調辨識率皆獲得提升(單字辨識率平均值由39.6%上升至65.6%,聲調辨識率平均值由69.2%上升至96.8%)。其後再將此一結果和4位實際使用進階結合編碼策略之人工電子耳配戴者做一比較,其平均值結果在單字及聲調辨識率上有提升(單字辨識率平均值由13%上升至27.8%,聲調辨識率平均值由54%上升至78%)。最後結果也發現,若能提供頻域成分愈多的原始訊息,在單字辨識率上會得到更多助益。


    The aim of this study is to simulate the cochlear implant (CI) with advanced combination encoding (ACE) strategy combined with low-frequency speech signal simulated hearing aid to evaluate their effects on Chinese word and tone recognition rates. Recent studies have shown that the effects of binaurally hearing will gain benefits on Chinese speech recognition. Previous study in our laboratory has confirmed that Chinese speech recognition rates could be improved with continuous interleaved sampling (CIS) strategy combined acoustic hearing. Because ACE strategy is the preferred speech encoding strategy for most of the CI recipients, we followed the same experimental environments of previous study and changed the speech strategy from CIS to ACE in this study. Signal noise ratio (SNR) of simulated cochlear implants signals were tuned to +4dB. Chinese word and tone recognition rates were evaluated in five normal-hearing (NH) subjects using ACE under three different conditions: 1) only simulated CI signals with modulated Gaussian white noise for monaural stimulation, 2) simulated CI signals with modulated Gaussian white noise and simulated (HA) signals (low-pass speech signals with cutoff frequency of 500 Hz) for monaural stimulation, and 3) simulated CI signals with modulated Gaussian white noise to one ear and simulated HA signals to the other ear for dichotic stimulation. For comparison purpose, Chinese word and tone recognition were also evaluated in four cochlear implant (CI) users of the Nucleus-24 device using ACE strategy and with contralateral hearing aid (HA). Preliminary results showed that the Chinese word and tone recognition rates of the NH listeners and CI recipients are statistically significantly improved (word recognition rates were improved from 39.6% to 65.6%, 69.2% to 96.8% for NH listeners and 13% to 27.8%, 54% to 78% for CI recipients). These results suggest that Chinese speech recognition could be enhanced if more speech information are provided from the HA to CI users and recognition rates are further improved with increasing amounts of frequency acoustic information.

    目錄 . I 圖目錄 III 表目錄 V 第一章 緒論 1 1.1 研究動機 1 1.2 正常聽覺原理概要介紹 2 1.3 相關文獻回顧 3 1.3.1 人工電子耳語言辨識效果 3 1.3.2 人工電子耳結合助聽器語言辨識效果 5 1.3.3 模擬人工電子耳語言辨識效果 6 1.4 論文架構 10 第二章 人工電子耳介紹 12 2.1 人工電子耳實體概要介紹 12 2.2 人工電子耳語言處理策略概要介紹 13 2.2.1 單頻道策略(Single-channel strategy) 13 2.2.2 多頻道策略(Multi-channel strategy) 15 第三章 ACE語言策略結合助聽器成效分析模擬 21 3.1 ACE策略實現和驗證 21 3.1.1 實驗方法 24 3.1.2 刺激速率實驗結果 25 3.2 ACE語言策略結合助聽器成效分析模擬 29 3.2.1 實驗方法 29 3.2.2 實驗結果 31 3.3 模擬雙耳人工電子耳(Bilateral CI)實驗結果 47 第四章 ACE語言策略結合助聽器臨床成效分析 49 4.1 實驗方法 50 4.2 實驗結果 51 第五章 實驗結果討論 56 5.1 模擬實驗討論 56 5.2 臨床實驗討論 65 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 70 參考文獻 73 附錄A 77 附錄B 78

    Blamey, P. J. , Dowell, R. C., Tong, Y. C., Brown, A. M., Luscombe, S. M., and Clark, G. M.(1984). "Speech processing studies using an acoustic model of a multiple-channel cochlear implant," J. Acoust. Soc. Am. 76, 104–110.
    Ching, T. Y. , Incerti, P. , and Hill, M. (2004). "Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears," Ear Hear. 25, 9–21.
    Clark, G. ( 2003). "Cochlear implants : Fundamental and applications"(AIP Press, 175 Fifth Avencu,NY), Chap.7, pp. 381–442.
    Dillon, H. (2001). "Binaural and bilateral considerations," in Hearing Aids (Boomerang Press, Sydney, Aus), Chap. 14, pp. 376–380.
    Dorman, M. , Loizou, P. , Tu, Z, and Fitzke, J. (2000). "Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors," Ann. Otol. Rhinol. Laryngol. Suppl. 185, 67–68.
    Dorman, M. , Spahr, A. J., Loizou, P. C., Dana, C. J. , and Schmidt, J. S. (2005). "Acoustic Simulations of Combined Electric and Acoustic Hearing," Ear Hear. 26, 371–380.
    Dorman, M. , Loizou, P. ,and Fitzke, J. (1998). "The identification of consonants and vowels by cochlear implants patients using a 6-channel CIS processor and by normal hearing listeners using simulations of processors with two to nine channels," Ear Hear. 19, 162–166.
    Dorman, M. , Loizou, P. ,and Rainey,D. (1997). "Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs," J. Acoust. Soc. Am. 102, 2403–2411
    Fu, Q. J. , Hsu, C. J. and Horng, M. J. (2004). "Effects of speech processing strategy on Chinese tone recognition by nucleus-24 cochlear implant users," Ear Hear. 25, 501–508.
    Fu, Q. J. , Shannon, R. V. (1998). "Effects of amplitude nonlinearity on phoneme recognition by cochlear implant users and normal-hearing listeners," J. Acoust. Soc. Am. 104, 2570–2577.
    Fu, Q. J. , Shannon, R. V. , and Wang, X. (1998). "Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing," J. Acoust. Soc. Am. 104, 3586–3596.
    Kirk, K. I. , Miyamoto, R. T. , Lento, C. L. , Ying, E. , O''Neill, T, and Fears, B. (2002). "Effects of age at implantation in young children," Ann. Otol. Rhinol. Laryngol. Suppl. 189, 69–73.
    Lai, W. K. , Bogli, H. , and Dillier, N. (2003). "A software tool for analyzing multichannel cochlear implant signals," Ear Hear. 24, 380–391.
    Laneau, J. , Moonen, M. , Wouters, J. (2006). "Factors affecting the use of noise-band vocoders as acoustic models for pitch perception in cochlear implants," J. Acoust. Soc. Am. 119, 491–506.
    Loizou, P. (1998). "Mimicking the human ear," IEEE Signal Processing Magazine. 15, 101–130.
    Luo, X, and Fu, Q. J. (2006). "Contribution of low-frequency acoustic information to Chinese speech recognition in cochlear implant simulations," J. Acoust. Soc. Am. 120, 2260–2266.
    McDermott, H. J. and Seligman, P. (1995). "Architecture of the Spectra-22 speech processor," Ann. Otol. Rhinol. Laryngol. Suppl. 166, 139–141.
    Nelson, P. B. , Jin, S. H. , Carney, A. E. , and Nelson, D. A. (2003). "Understanding speech in modulated interference: Cochlear implant users and normal-hearing listeners," J. Acoust. Soc. Am. 113, 961–968.
    Nogueira, W. , B, Jin, S. H. , Carney, A. E. , and Nelson, D. A. (2003). "Understanding speech in modulated interference: Cochlear implant users and normal-hearing listeners," J. Acoust. Soc. Am. 113, 961–968.
    Nogueira, W. , Buchner, A. (2005). "A Psychoacoustic "N of M" -Type Speech Coding Strategy for Cochlear Implants," Journal on Applied Signal Processing. 18, 3044–3059.
    Pasanisi, E. , Bacciu, A, Vincenti, V, Guida, M, Berghenti, M. T. , Barbot, A, Panu, F, and Bacciu, S. (2002). "Comparison of speech perception benefits with SPEAK and ACE coding strategies in pediatric Nucleus CI24M cochlear implant recipients," Int. J. Pediatr. Otorhinolaryngol. 64, pp 159.
    Rubinstein, J. (2004). "How cochlear implants encode speech" Curr. Opin. Otolaryngol. Head. Neck. Surg. 12, 444 - 448.
    Rubinstein, J.-T. and Turner, C. (2003). "A novel acoustic simulation of cochlear implant hearing: effects of temporal fine structure," in. Proc. of the 1st IEEE EMBS Conference on Neural Eng. pp. 142 - 145
    Shannon, R. V. , Zeng, F. G. , Kamath, V, Wygonski, J, and Ekelid, M. (1995). "Speech recognition with primarily temporal cues," Science. 270, 303–304.
    Skinner, M. W. , Holden, L. K. ,Whitford, L. A. , Plant, K. L. , Psarros, C , and Holden, T. A. (2002). "Speech recognition with the nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults," Ear Hear. 23, 207–223.
    Vandali, A. E. , Sucher, C. , Tsang, D. J., McKay, C. .M, Chew, J. W., and McDermott, H. J. (2005). "Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies," J. Acoust. Soc. Am. 117, 3126–3138.
    Vandali, A. E. , Whitford. L. A., Plant. K. L., and Clark. G. M. (2000). "Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system," Ear Hear. 21, 608–624.
    Willard, R. (1968). "Speech and hearing science"(Prentice-Hall, Inc. Press, Englewood Cliffs,New Jersey), Chap.6, pp. 427–428..
    Wu, J. L. , Lin, C. Y. , Yang, H. M. , and Lin,Y. H. (2006). "Effect of age at cochlear implantation on open-set word recognition in Mandarin speaking deaf children," Int. J. Pediatr. Otorhinolaryngol. 70, 207–211.
    Yu, S. , Guan,T. (2005). "An Improvement of Speech Synthesis in Acoustic Simulation Model of Cochlear Implants with CIS Strategy," Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 5343–5346.
    許筱曼 (民92)。 "改變電刺激速率對於人工電子耳兒童漢語語音及聲調辨識的影響"國立台北護理學院聽語障礙科學研究所碩士論文。
    曾凡鋼 (1998)。 "耳蝸植入術的進展" 中華耳鼻喉科 。 33, 頁. 123
    楊惠美、吳俊良 (民94)。 "學齡前兒童中文語彙毗鄰測驗的編制與驗證" 台灣耳鼻喉頭頸外科雜誌。 40,1–12.
    劉殿禎 (民94)。 "聽力障礙與助聽器" (健康世界出版社,台北),頁161–168。
    鄭惟仁 (民95)。 "結合人工電子耳與助聽器對中文語音辨識率的影響" 國立中央大學電機工程所碩士論文。
    賴亮全譯 (民87)。 "蓋統生理學 : 生理及疾病機轉" (華杏,台北), 頁624–632。
    錢宇虹 (2004)。 "人工耳蝸植入者對側耳配戴助聽器的效果評價" 聽力學及言語疾病雜誌 。 12, 19–20.

    QR CODE
    :::