跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡蕙婷
Hui-Ting Tsai
論文名稱: 類澱粉胜肽於水溶液中聚集行為之動力學與熱力學探討
Kinetics and thermodynamics studies of β-amyloid peptide aggregation in aqueous solutionKinetics and thermodynamics studies of β-amyloid peptide aggregation in aqueous solution
指導教授: 陳文逸
Wen-Yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 117
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是針對類澱粉胜肽(β-amyloid,Aβ)於不同的水溶液環境(培養溫度、緩衝液鹽濃度及pH值)中聚集行為的探討,藉以了解不同環境對於Aβ(1-40)聚集機制之影響。整個研究主題分為兩部分,第一部分是利用圓二色光譜儀及螢光光譜儀隨時間測量Aβ在不同培養環境中二級結構變化及纖維的生成,藉以探討其聚集的動力學機制,再輔以原子力顯微鏡得到其聚集後的形貌圖。第二部份是利用恆溫滴定微卡探討Aβ(1-40)於不同環境、不同聚集階段時稀釋熱的改變,以期得到Aβ(1-40)聚集時的熱力學機制。
    在Aβ(1-40)聚集的過程中,其二級結構會由random coil直接轉變為β-sheet,可以two-state model來描述,且培養溫度及鹽濃度越高,Aβ越易摺疊成β-sheet,表示Aβ(1-40)是以疏水作用力來穩定β-sheet之二級結構。在Aβ(1-40)聚集動力學部分,其nucleation的速率常數遠小於elongation的速率常數,這說明在Aβ(1-40)聚集的過程中,成核反應為速率決定步驟。在熱力學部分,由熱量變化發現Aβ(1-40)成核反應是以疏水作用力為主導,而Aβ(1-40)形成纖維結構之後,纖維與纖維之間則帶有靜電排斥力。除此之外,環境鹽濃度也會影響到Aβ(1-40)的聚集機制,在低鹽的環境下單體的Aβ(1-40)與纖維兩側之間有靜電排斥力,因此只會與纖維的兩端結合,所產生之纖維較為細長。隨著環境鹽濃度提高,單體之Aβ(1-40)可能會與最初形成之纖維結構的兩側結合,除此之外,纖維外部所帶之靜電排斥力會被鹽類遮蔽,而導致纖維與纖維之間也會產生吸附聚集的情形,因此所產生之纖維較為粗短。


    In this study, we investigated the aggregation of Aβ(1-40) in various conditions including different incubated temperature、salt concentration and pH. The objectives of this investigation went in two fold and were achieved by the following studies : First, we used Circular Dichroism (CD) to observe the secondary structure transition during Aß aggregation, and we used Thioflavine T(ThT)fluorescence probe and AFM to monitor the fibrils’ formation and morphology. Second, we use Isothermal Titration Microcalorimetry (ITC) to obtain the dilution heat at different Aß aggregate states. The thermodynamic information during Aβ aggregation was then discussed with the CD and fluorescence data.
    The variations of secondary structure of Aβ(1-40) obtained by CD exhibite a temperature and salt concentration dependent behavior. The transition from random coil to ß-sheet can be described by a two-state model. It indicates that the hydrophobic interactions is important for the intermolecular ß-sheet structure stability of Aβ(1-40) in solution. Besides, from the time dependent CD spectrum fitting, we found that the rate constant of nucleation is much smaller than that of elongation in the process of aggregation of Aβ(1-40), indicating nucleation is the rate-determining step. From thermodynamic analysis, the dilution heat(ΔHdil) of Aß(1-40) monomer obtained by ITC is an endothermic reaction, and as temperature increases, the ΔHdil increases. The results demonstrate that hydrophobic interactions play a central role in the nucleation process of Aß(1-40). Moreover, we also observed that the mechanism of Aβ(1-40)aggregation in various salt concentration is different. In low salt concentration, monomer deposition is only on the ends of fibrils and resultes in long and thin fibrils. In contrast, monomer and fibril and fibril and fibril association occures in high salt concentration due to the reduced electrostatic repulsive forces, and the association involves lateral interactions resultes in short and thick fibrils. These results were demonstrated by AFM observation.

    中文摘要...................................................................I Abstract .................................................................II 目錄 ......................................................................V 圖目錄 ..................................................................VII 表目錄 ................................................................ XIII 第一章 序論............................................................... 1 第二章 文獻回顧........................................................... 2 2.1 阿茲海默症與類澱粉胜肽................................................ 2 2.1.1 阿茲海默症(Alzheimer’s Disease,AD).............................. 2 2.1.2 類澱粉胜肽(β-amyloid,Aβ) ........................................ 6 2.1.3 類澱粉胜肽的結構及特性.............................................. 9 2.1.4 影響類澱粉胜肽聚集之因素........................................... 16 2.1.4.1 Aβ 序列.......................................................... 16 2.1.4.2 Aβ 濃度.......................................................... 18 2.1.4.3 Aβ 培養溫度...................................................... 21 2.1.4.4 緩衝溶液pH 值.................................................... 23 2.1.4.5 緩衝溶液鹽濃度................................................... 25 2.1.4.6 Aβ 初始溶劑效應.................................................. 28 2.2 圓二色光譜儀(Circular Dichroism,CD) .............................. 30 2.2.1 圓二色光譜儀測量原理............................................... 30 2.2.2 蛋白質或多胜肽的圓二色光譜......................................... 32 2.3 恆溫滴定微卡計....................................................... 34 2.3 Thioflavine T(ThT)螢光............................................. 37 第三章 實驗藥品與儀器設備................................................ 38 3.1 實驗藥品............................................................. 38 3.2 儀器設備............................................................. 39 3.3 實驗步驟............................................................. 40 3.3.1 溶液配置........................................................... 40 3.3.1.1 Aβ 溶液製備...................................................... 40 3.3.1.2 不同pH 值及鹽濃度之緩衝溶液...................................... 40 3.3.1.3 清洗溶液......................................................... 41 3.3.2 恆溫滴定微卡計實驗................................................. 41 3.3.3 圓二色光譜儀實驗................................................... 41 3.3.4 ThT 螢光光譜儀實驗................................................. 42 3.3.5 原子力顯微鏡實驗................................................... 42 第四章 結果與討論........................................................ 43 4.1 Aβ(1-40)於水溶液中聚集機制之探討................................... 43 4.1.1 培養溫度對Aβ(1-40)聚集之影響..................................... 43 4.1.2 緩衝液鹽濃度對Aβ(1-40)聚集之影響................................. 56 4.1.3 緩衝液pH 值對Aß(1-40)聚集之影響.................................. 68 4.1.4 Aβ(1-40)二級結構變化數據之動力學分析............................. 74 4.2 Aβ(1-40)於水溶液中聚集熱力學之探討................................. 80 4.2.1 Aβ(1-40)不同培養溫度之熱力學探討................................. 80 4.2.2 Aβ(1-40)不同環境鹽濃度之熱力學探討............................... 83 4.3 綜合討論............................................................. 86 第五章 結論.............................................................. 89 第六章 參考文獻.......................................................... 92

    [1] Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed,
    R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola,
    K. L., Wals, P., Finch, C. E., Krafft, G. A., and Klein, W. L.,
    “Diffusible, nonfibrillar ligands derived from Aß1-42 are potent
    central nervous system neurotoxins."Proceedings of the National
    Academy of Sciences of the United States of America, 1998, 95,
    6448-6453.
    [2] Xing, Y., and Higuchi, K.,“Amyloid fibril proteins."Mechanisms
    of Ageing and Development, 2002, 123,1625-1636.
    [3] Sommer, B.,“Alzheimer’s disease and the amyloid cascade
    hypothesis:ten years on."Neurosciences, 2002, 1, 87-92.
    [4] Davies, P.,“A very incomplete comprehensive theory of
    Alzheimer’s disease."Annals of the New York Academy of
    Sciences, 2000, 924, 8-16.
    [5] Seiffert, D., Bradley, J. D., Rominger, C. M., Rominger, D. H., Yang,
    F., Meredith, J., Wang, Q., Roach, A. H., Thompson, L. A., Spitz, S.
    M., Higaki, J. N., Prakash, S. R., Combs, A. P.,Copeland, R. A.,
    Arneric, S. P., Hartig, P. R., Robertson, D. W., Cordell, B., Stern, A.
    M., Olson, R. E., and Zaczek, R.,“Presenilin-1 and 2 are molecular
    targets for gamma secretase inhibitors."Journal of Biological
    Chemistry, 2000, 275, 34086-34091.
    [6] Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D.
    E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and
    PericakVance, M. A.,“Gene dose of apolipoprotein E type 4 allae
    and the risk of Alzheimer’ s disease in late onset families."Science,
    1993, 261, 921-923.
    [7] Holtzman, D. M., Bales, K. R., Tenkova, T., Fagan, A. M.,
    Parsadanian, M., Sartorius, L. J., Mackey, B., Olney, J., McKeel, D.,
    Woznizk, D., and Paul, S. M.,“Apolipoprotein E
    isoform-dependent amyloid deposition and neuritic degeneration in a
    mouse model of Alzheimer’s disease."Proceedings of the National
    Academy of Sciences, 2000, 97, 2892-2897.
    [8] Hardy, J., Selkoe2, D. J.,“The Amyloid Hypothesis of Alzheimer’s
    Disease:Progress and Problems on the Road to Therapeutics."
    Science, 2002, 297, 353-356.
    [9] Shoghi-Jadid, K., Barrio, J. R., Kepe, V., Wu, H. M., Small, G. W.,
    Phelps, M. E., and Huang, S. C.,“Imaging β-amyloid fibrils in
    Alzheimer’s disease:a critical analysis through simulation of
    amyloid fibril polymerization."Nuclear Medicine and Biology,
    2005, 32, 337-351.
    [10]Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L.,
    Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P., and
    Black, R. A.,“Evidence that tumor necrosis factor alpha converting
    enzyme is involved in regulated alphasecretase cleavage of the
    Alzheimer amyloid protein precursor."Journal of Biological
    Chemistry, 1998, 273, 27765-27767.
    [11]Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R.,
    Jasionowski, M., Haass, C., and Fahrenholz, F.,“Constitutive and
    regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor
    protein by a disintegrin metalloprotease."Proceedings of the
    National Academy of Sciences, 1999, USA 96, 3922-3927.
    [12]Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A.,
    Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo,
    Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A.,
    Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F.,
    Treanor, J., Rogers, G., and Citron, M.,“Beta-secretase cleavage of
    Alzheimer’s amyloid precursor protein by the transmembrane
    aspartic protease BACE."Science, 1999, 286, 735-741.
    [13]Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R.,
    Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J.,
    Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I.,
    Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P.,
    Suomensaari, S. M., Wang, S., Walker, D., and John, V.,
    “Purification and cloning of amyloid precursor protein
    beta-secretase from human brain."Nature, 1999, 402, 537-540.
    [14]Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C.,
    Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R.,
    Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A.,
    Heinrikson, R. L., and Gurney, M. E.,“Membrane-anchored
    aspartyl protease with Alzheimer’s disease beta-secretase activity."
    Nature, 1999, 402, 533-537.
    [15]De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H.,
    Guhde, G., Annaert, W., Von Figura, K., and Van Leuven, F.,
    “Deficiency of presenilin-1 inhibits the normal cleavage of amyloid
    precursor protein."Nature, 1998, 391, 387-390.
    [16]Allsop, D., Swanson, L., Moore, S., Davies, Y., York, A., El-Agnaf,
    O. M. A., Soutar, I.,“Fluorescence Anisotropy: A Method for Early
    Detection of Alzheimer β-Peptide (Aβ) Aggregation."Biochemical
    and Biophysical Research Communications, 2001, 285, 58-63.
    [17]Terzi E., Holzemann, G., Seelig, J.,“Reversible Random
    Coil-β-Sheet Transition of the Alzheimer β-Amyloid
    Fragment(25-35)."Biochemistry, 1994, 33, 1345-1350.
    [18]Nilsson, M. R.,“Techniques to study amyloid fibril formation in
    vitro."Methods, 2004, 34, 151-160.
    [19]Hideki, H., Kimura, N., Yamaguchi, H., Hasegawa, K., Yokoseki,
    T., Shibata, M., Yamamoto, N., Michikawa, M., Yoshikawa, Y.,
    Terao, K., Matsuzaki, K., Lemere, C. A., Selkoe, D. J., Naiki, H.,
    and Yanagisawa, K.,“A Seed for Alzheimer Amyloid in the
    Brain."The Journal of Neuroscience, 2004, 24, 4894-4902.
    [20]Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman,
    R. D., Delaglio, F., and Tycko, R.,“A structural model for
    Alzheimer’s β-amyloid fibrils based on experimental constraints
    from solid state NMR. "Proceedings of the National Academy of
    Sciences, 2002, 99, 16742-16747.
    [21]Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B.,
    Dobeli, H., Schubert, D., and Riek, R.,“3D structure of
    Alzheimer’s amyloid-β(1– 42) fibrils"Proceedings of the National
    Academy of Sciences, 2005, 102, 17342-17347.
    [22]Kamihira, M., Naito, A., Tuzi, S., Nosaka, A. Y., and Saito, H.,
    “Conformational transitions and fibrillation mechanism of human
    calcitonin as studied by high-resolution solid-state 13C NMR."
    Protein Science, 2000, 9, 867-877.
    [23]Sabat´e, R., Gallardo, M., and Estelrich, J.,“Temperature
    dependence of the nucleation constant rate in β amyloid
    fibrillogenesis."International Journal of Biological
    Macromolecules, 2005, 35, 9-13.
    [24]Naiki, H., and Gejyo, F.,“Kinetic Analysis of Amyloid Fibril
    Formation."Methods in Enzymology, 1999, 309, 305-318.
    [25]Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M.,
    Henschen, A., Yates, J., Cotman, C., and Glabe, C.,“Assembly and
    Aggregation Properties of Synthetic Alzheimer’s A4/β Amyloid
    Peptide Analogs."Journal of Biological Chemistry, 1992, 267,
    546-554.
    [26]Jarrett, J. T., Berger, E. P., and Lansbury, P. T., Jr.,“The Carboxy
    Terminus of the Amyloid Protein Is Critical for the Seeding of
    Amyloid Formation: Implications for the Pathogenesis of
    Alzheimer''s Disease."Biochemistry, 1993, 32, 4693-4697.
    [27]Stine, W. B., Jr., Dahlgren, K. N., Krafft, G. A., and LaDu, M. J.,
    “In Vitro Characterization of Conditions for Amyloid-β Peptide
    Oligomerization and Fibrillogenesis."Journal of Biological
    Chemistry, 2003, 278, 11612-11622.
    [28]Tashima, Y., Oe, R., Lee, S., Sugihara, G., Chambers, E. J.,
    Takahashi, M., and Yamada, T.,“The Effect of Cholesterol and
    Monosialoganglioside (GM1) on the Release and Aggregation of
    Amyloid -Peptide from Liposomes Prepared from Brain
    Membrane-like Lipids."Journal of Biological Chemistry, 2004, 279,
    17587–17595.
    [29]Terzi, E., Holzemann, G., and Seelig, J.,“Self-association
    of β-Amyloid Peptide (1–40) in Solution and Binding to Lipid
    Membranes."Journal of Molecular Biology, 1995, 252, 633-642.
    [30]Gursky, O., Aleshkov, S.,“Temperature-dependent β-sheet
    formation in β-amyloid Aβ1-40 peptide in water: uncoupling
    β-structure folding from aggregation."Biochimica et Biophysica
    Acta, 2000, 1476, 93-102.
    [31]Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C. G., and
    Surewicz, W. K.,“Acceleration of Amyloid Fibril Formation by
    Specific Binding of Aβ-(1–40) Peptide to Gangliosidecontaining
    Membrane Vesicles."Journal of Biological Chemistry, 1997, 272,
    22987-22990.
    [32]Wood, S. J., Maleeff, B., Hart, T., and Wetzel, R.,“Physical,
    Morphological and Functional Differences between pH 5.8 and 7.4
    Aggregates of the Alzheimer’s Amyloid Peptide Aβ."Journal of
    Molecular Biology, 1996, 256, 870-877.
    [33]Nichols, M. R., Moss, M. A., Reed, D. K., Lin, W. L.,
    Mukhopadhyay, R., Hoh, J. H., and Rosenberry, T. L.,“Growth of
    β-Amyloid(1-40) Protofibrils by Monomer Elongation and Lateral
    Association. Characterization of Distinct Products by Light
    Scattering and Atomic Force Microscopy."Biochemistry, 2002, 41,
    6115-6127.
    [34]Barrow, C. J., Yasuda, A., Kenny, P. T., and Zagorski, M. G.,
    “Solution Conformations and Aggregational Properties of
    Synthetic Amyloid β-Peptides of Alzheimer’s Disease Analysis of
    Circular Dichroism Spectra."Journal of Molecular Biology, 1992,
    225, 1075-1093.
    [35]LeVine III, H.,“4,4’-Dianilino-1,1’-binaphthyl-5,5’-disulfonate:
    report on non- β-sheet conformers of Alzheimer’s peptide
    β(1–40)." Archives of Biochemistry and Biophysics, 2002, 404,
    106-115.
    [36]Nichols, M. R., Moss, M. A., Reed, D. K., Cratic-McDaniel, S., Hoh,
    J. H., and Rosenberry, T. L.,“Amyloid- β Protofibrils Differ from
    Amyloid-β Aggregates Induced in Dilute Hexafluoroisopropanol in
    Stability and Morphology."Journal of Biological Chemistry, 2005,
    280, 2471-2480.
    [37]Rodger, A., and Nordén, B.,“Circular dichroism and linear
    dichroism."Oxford, 1997.
    [38]Lightner, D. A., Gurst, J. E.,“Organic conformational analysis and
    stereochemistry from circular dichroism spectroscopy."John Wiley
    & Sons, Inc., 2000.
    [39]Velluz, L., Legrand, M., Grosjean, M.,“Optical circular
    dichroism." Academic Press, Inc., 1965.
    [40]Choo-Smith, L. P., and Surewicz, W. K.,“The interaction between
    Alzheimer amyloid β(1-40) peptide and ganglioside GM1-containing
    membranes."FEBS Letters, 1997, 402, 95-98.
    [41]Ladbury, J. E.,“Application of Isothermal Titration Calorimetry in
    the Biological Sciences: Things Are Heating Up!"BioTechniques,
    2004, 37, 885-887.
    [42]LeVINE, H.,“Thioflavine T interaction with synthetic
    Alzheimer’s disease β-amyloid peptides:Detection of amyloid
    aggregation in solution."Protein Science, 1993, 2, 404-410.
    [43]LeVine, H.,“Stopped-flow kinetics reveal multiple phases of
    thioflavin T binding to Alzheimer β(1-40) amyloid fibrils."
    Archives of Biochemistry and Biophysics, 1997, 342, 306-316.
    [44]Wakabayashi, M., Okada, T., Kozutsumib, Y.and Matsuzaki,
    K.,“GM1 ganglioside-mediated accumulation of amyloid β-protein
    on cell membranes."Biochemical and Biophysical Research
    Communications, 2005, 328, 1019-1023.
    [45]Yip, C. M., Elton, E. A., Darabie, A. A., Morrison, M. R. and
    McLaurin, J.,“Cholesterol, a Modulator of Membrane-associated
    Aβ-Fibrillogenesis and Neurotoxicity."Journal of Molecular
    Biology, 2001, 311, 723-734.

    QR CODE
    :::