跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張貴雲
Kuei-Yun Chang
論文名稱: 阿拉伯芥HIT1基因定序及選殖
Identification, sequencing and cloning of Arabidopsis HIT1 gene
指導教授: 吳少傑
Shaw-Jye Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 92
語文別: 中文
論文頁數: 53
中文關鍵詞: 抗熱基因滲透壓逆境阿拉伯芥
外文關鍵詞: osmotic stress, heat stress, Arabidopsis
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫對植物可以是一種致死性逆境。之前本實驗室已運用功能性遺傳學的策略,篩選出一對高溫逆境過度敏感之突變種植物,取名為hit1(heat intolerant) 。此突變植物在37℃之高溫逆境下無法存活超過4天,野生種則可。
    本研究之主要目的即在於hit1遺傳位址之辨認及定序。實驗結果顯示,hit1是BAC F11F12中,阿拉伯芥登錄序號為AT1g50500之基因內,由C變成A之點突變。此推論尚須轉殖正常基因回突變株體內進行互補實驗,觀察可否恢復其抗高溫的表現型,作為最後之確認。
    氨基酸序列比對的結果顯示,AT1g50500與conserve domain KOG2180有極高的相似度,而該conserve domain的代表為late golgi membrane sorting complex, subunit VPS53。Vps53p存在於酵母菌中,需與Vps52p及Vps54p形成聚合體,在細胞中主要是從trans golgi membrane將carboxypeptidase Y(CPY)運至prevacuolar / endosomal compartment(PVC)。文獻指出,CPY之結構相似於熱修克蛋白(HSP)。就此推測,HIT1在植物細胞中有可能是扮演運輸HSP的角色。除此之外,有關生理之觀察及實驗發現,HIT1基因會影響植物體內水分之平衡關係。在高濃度mannitol環境下,野生種較hit1突變植物有較優之生長表現。綜合以上結果,HIT1基因除賦予阿拉伯芥耐熱能力之外,亦涉及阿拉伯芥抵抗滲透壓的能力,其機制則有待更進一步的研究來揭露。


    A heat-hypersensitive mutant of Arabidopsis was isolated based on its inability to survive under normally non-lethal high temperature condition. The mutant named hit1(heat-intolerant) is distinguished from wild-type plant via incubation at 37℃ for 4 days. hit1 is unable to survive under such condition for more than 4 days.
    This program is to sequence genomic DNA and identify the locus on chromosome. Current results suggest that the hit1 locus is on BAC F11F12, within the gene whose login number in the Arabidopsis database is AT1g50500, and the mutation of hit1 is a single nucleotide changing from C to A.
    Amino acid sequence alignment indicated that AT1G50500 contains conserve domain KOG2180, and is highly similar to the late golgi membrane sorting complex, subunit VPS53. Vps53p exists in the yeast, forming a complex with Vps52p and Vps54p, and the main function of the complex is to transport carboxypeptidase Y (CPY) from trans golgi membrane to prevacuolar / endosomal compartment (PVC). It has been indicated by some documents that CPY and HSP might have similar function in terms of structures. According to these data, it is reasonable to hypothesize that the HIT1 might play a role in transporting HSP in the plant cell. On the other hand, HIT1 could affect water balance in plants. Wild-type plants grow better than hit1 mutant at high mannitol concentrations. Taken together, HIT1 may function in sorting certain proteins whose roles are critical for plants to cope with both heat and osmotic stresses.

    中文摘要 -------------------------------------------------I 英文摘要 -----------------------------------------------III 誌謝 ----------------------------------------------------IV 目錄 -----------------------------------------------------V 表目錄 -------------------------------------------------VII 圖目錄 ------------------------------------------------VIII 第一章 緒論 一、 介紹 -------------------------------------------1 二、研究目的 ----------------------------------------9 第二章 材料與方法 一、 實驗材料---------------------------------------11 二、 實驗方法 --------------------------------------11 三、 實驗設計---------------------------------------17 第三章 結果 一、 T-DNA插入阿拉伯芥後表現型測試------------------18 二、核苷酸定序找尋突變點----------------------------18 三、HIT1基因的選殖 ---------------------------------19 四、阿拉伯芥HIT1基因cDNA之序列分析----------------20 五、滲透壓試驗 ----------- -------------------------21 第四章 討論 一、核苷酸定序--------------------------------------24 二、基因選殖----------------------------------------24 三、HIT1基因的功能----------------------------------25 四、生理試驗----------------------------------------28 五、異種間互補試驗----------------------------------31 第五章 結論與建議 -------------------------------------- 33 參考文獻-------------------------------------------------46 附錄 --------------------------------------------------- 53 表目錄 表1 引子組--------------------------------------------- - 43 表1 引子組(續1) ---------------------------------------- 44 表1引子組(續2)---------------------------------------- 45 圖目錄 圖1於BAC F11F12上定位HIT1基因-------------------- 34 圖2核苷酸定序圖---------------------------------------35 圖3 HIT1基因結構及突變點所在位置--------------------36 圖4 HIT1基因蛋白質序列與conserve domain比對結果----37 圖5阿拉伯芥HIT1與酵母菌Vps53p序列比對結果------- 38 圖6野生種與hit1突變種於mannitol下的發芽情形-------39 圖6野生種與hit1突變種於mannitol下的發育情形-------40 圖7野生種與hit1突變種於glucose及sucrose下的發芽、發育情形------------------------------------------- 41 圖8阿拉伯芥預測基因ATG50500與AT1G50970氨基酸序列比對結果------------------------------------------ 42

    Alia, H.H., Chen, T., and Murata, N. (1998) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21: 232-239
    Bell, C.J. and Ecker, J.R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137-144
    Boston, R.S., Viitanen, P.V., and Vierling, E. (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191-222
    Bohnert, H.J. and Jensen, R.G. (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotech. 14: 89-97
    Bajaj, S., Targolli, J., Liu, L.F., Ho, T.H.D., and Wu, R. (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5: 493-503
    Bouche, N. and Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4: 111-117
    Burget, E.G., Verma, R., MØlhØj, M., and Reiter, W.D. (2003) The biosynthesis of L-Arabinose in plants: molecular cloning and characterization of a Golgi-Localized UDP-D-Xylose 4-Epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15: 523-531
    Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res. 16: 10881-10890
    Cotton, R.G.H. (1993) Current methods of mutation detection. Mutat Res 285: 125-144
    Carrasco, R., Almoguera, C., and Jordano, J. (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 272: 27470-27475
    Collada, C., Gomez, L., Casado, R., and Aragoncillo, C. (1997) Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115: 71-77
    Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
    Chang, C.C., Gilsdorf, J.R., Dirita, V.J., and Marrs, C.F. (2000) Identification and genetic characterization of haemophilus inffuenzae genetic island 1. Infection and Immunity 68: 2630-2637
    Conibear, E., and Stevens, T.H. (2000) Vps52p, vps53p, and vps54p form a novel multisubunit complex requires for protein sorting at the yeast late golgi. Mol Biol Cell 11: 305-323
    Dat, J.F., Lopez-Delgado, H., Foyer, C.H., and Scott, I.M. (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116: 1351-1357
    Dijkwel P.P., Huijser C., Weisbeek P.J., Chua N.H., and Smeekens S.C.M. (1997) Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9: 583-595
    Fodde, R., Losekoot, M. (1994) Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum mutat 3: 83-94
    Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251-1261
    Gross, E., Arnold, N., Goette, J., Schwarz-Boeger, U., and Kiechle, M. (1999) A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet 105: 72-78
    Herman, P.L., and Marks, M.D. (1989) Trichome development in Arabidopsis thaliana. II. Isolation and complementation of the GLABROUS1 gene. Plant cell 1: 1051-1055
    Hohl, M., and Peter, S. (1991) Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycerol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol 95: 716-722
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994
    Hare, D.D., Cress, W.A., Van Staden, J. (1998) Dissecting the role of osmolyte accumulation during stress. Plant Cell Environ 21: 535-553
    Hong, S.W., and Vierling, E. (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97: 4392-4397
    Hoekstra, F.A., Golovina, E.A., and Buitink, J. (2001) Mechanisms of plants desiccation tolerance. Trends Plant Sci 6: 1360-1385
    Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130: 618-626
    Janda, T., Szalai, G., Tari, I., and Paldi, E. (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208: 175-180
    Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. and Last, R.L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450
    Keller, F., and Matile, P. (1989) Storage of sugars and mannitol in petioles of celery leaves. New Phytol. 113: 291-299
    Konieczny, A., and Ausubel, F.M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4: 403-410
    Krysan, P.J., Young, J.C., Tax, F.E., and Sussman, M.R. (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci USA 93: 8145-8150
    Liu, W.D., Smith, I., Rechtzigel, K.J., Thibodean, S.N., and James, C.D. (1998) Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 26: 1396-1400
    Markoff, A., Savov, A., Vladimirov, V., Bogdanova, N., Kremensky, I., and Ganev, V. (1997) Optimization of single-strand conformation polymorphism analysis in the presence of polyethylene glycerol. Clin Chem 43: 30-33
    Markoff, A., Sormbroen, H., Bogdanova, N., Preisler-Adams, S., Ganev, V., Dworniczak, B., and Horst, J. (1998) Comparison of conformation-sensitive gel electrophoresis and single-strand conformation polymorphism analysis for detection of mutations in the BRAC1 gene using optimized conformation analysis protocols. Eur J Hum Genet 6: 145-150
    McCallum, C.M., Comai, L., Gveene, E.A., Henikoff, S. (2000) Targeted screening for induced mutations. Nat Biotech 18: 455-457
    Marchler-Bauer, A., Anderson, J.B., DeWeese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., Liebert , C.A., Liu , C., Madej, T., Marchler, G.H., Mazumder, R., Nikolskaya, A.N., Panchenko, A.R., Rao, B.S., Shoemaker, B.A., Simonyan, V., Song, J.S., Thiessen, P.A., Vasudevan, S., Wang, Y., Yamashita, R.A., Yin, J.J., and Bryant, S.H. (2003) CDD: a curated entrez database of conserved domain alignments. Nucleic Acids Res. 31: 383-387
    Meinle, D.W., Meinke, L.K., Showalter, T.C., Schissel, A.M., Mueller, L.A., and Tzafrir, I. (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131: 409-418
    Nam, H.G., Giraudat, J., Boer, B., Moonan, F., Loos, W.D.B., Hauge, B.M., and Goodman, H.M. (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1: 699-705
    Nicholas, Smirnoff. (1998) Plant resistance to environmental stress. Curr. Opin. Biotech. 9: 214-219
    Ohsumi, K., Matsuda, Y., Nakajima, H., and Kitamoto, K. (2001) Cloning and characterization of the cpyA gene encoding intracellular carboxypeptidase from Aspergillus nidulans. Biosci. Biotechnol. Biochem. 65: 1175-1180
    Paleg, L.G., Douglas, T.J., van Daal, A., and Keech, D.B. (1981) Proline, betaine and other organic solutes protect enzymes against heat inactivation. Plant Physiol 8: 107-114
    Parsell, D.A., and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496
    Papageorgiou, G.C., and Murata, N. (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243-252
    Parinov, S., and Sundaresan, V. (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotech. 11: 157-161
    Price, J., Li, T.C., Kang, S.G., Na, J.K., and Jang, J.C. (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132: 1424-1438
    Peters, J.L., Cnudde, F., and Gerats, T. (2003) Forward genetics and map-based cloning approaches. TRENDS in Plant Science 8: 1360-1385
    Quesada V., Ponce M. R., and Micol J.L. (2000) Genetic Analysis of Salt-Tolerant Mutants in Arabidopsis thaliana. Genetics 154: 421-436
    Redei, G.P. (1975) Arabidopsis as a genetic tool. Annual reviews 111-127
    Ravnik-Glarak, M., Glavac, D., and Dean, M. (1994) Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum Mol Gen 3: 801-807
    Richter, S., and Seth, A. (1998) One step direct detection of recurrent mutations in the breast cancer susceptibility gene BRAC1. Int J Oncol 12: 1263-1267
    Pandey, R., and Agarwal, R.H. (1998) Water stress-induced changes in praline contents and nitrate reductase activity in rice under light and dark conditions. Physiol Mol Biol Plants 4: 53-57
    Soto, A., Allona, I., Collada, C., Guevara, M.A., Casado, R., Rodriguez-Cerezo, E., Aragoncillo, C., and Gomez, L. (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120: 521-528
    Sussman, M.R., Amasino, R.M., Young, J.C., Krysan, P.J., Austin, Phillips. S. (2000) The Arabidopsis knockout facility at the university of Wissconsin-Madison. Plant Physiol 124: 1465-1467
    Tarczynski, M.C., Jensen, R.G., and Bohnert, H.J. (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89: 2600-2604
    Tarczynski, M.C., Jensen, R.G., and Bohnert, H.J. (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510
    Thomas, J.C., Sepahi, M., Arendall, B., and Bohnert, H.J. (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell and Environ. 18: 801-806
    Tax, F.E., and Vernon, D.M. (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126: 1527-1538
    Abebe, T., Guenzi, A.C., Martin, B., and Cushman, J.C. (2003) Tolerance of mannitol-accumulating. Transgenic wheat to water stress and salinity. Plant Physiol 131: 1748-1755
    Vierling, E. (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620
    Winther, J.R., and SØrensen, P. (1991) Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Acad Sci USA 88:9330-9334
    Wu, S.J., Ding, L., and Zhu, J.K. (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617-627
    Wu, S.J., Locy, R.D., Shaw, J.J., Cherry, J.H., and Singh, N.K. (2000) Mutation in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. Plant Physiol 157: 543-547
    Sun, W., Bernard, C., van de Cotte, B., van Montagn, M., and Verbruggen, N. (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27: 407-415
    Yeh, C.H., Chang, P.L., Yeh, K.W., Lin, W.C., Chen, Y.M., and Lin, C.Y. (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94: 10967-10972
    Zhang, Y., Kanr, M., Price, B.D., Tetradis, S., and Makrigiorgos, G.M. (2002) An amplification and ligation-based method to scan for unknown mutations in DNA. Hum Mutat 20: 139-147
    Yin, Y., Cheong, H., Friedrichsen, D., Zhao, Y., Hu, J., Mora-Garcia, S., and Chory, J. (2002) A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc Natl Acad Sci USA 99: 10191-10196

    QR CODE
    :::