跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭柏亨
Po-Heng Kuo
論文名稱: Credit Risk Illustrated under Coupled diffusions
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 53
中文關鍵詞: 違約信用風險系統性風險KMV-默頓模型關聯擴散模型
外文關鍵詞: coupled diffusion model ii
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中,我們引用了一個關聯擴散模型來分析公司的信用風險。在負債
    的到期日時間T,假如公司的資產小於負債的帳面價值, 我們稱作違約。
    默頓模型在不同的測度下,在預測公司的信用風險時呈現出不同的表現
    方法。在實證研究上,我們使用最大概似法來討論。相比於KMV-默頓
    模型,關聯擴散模型在預測聯合違約機率上,發現聯合違約機率是個罕
    見事件,也被視為系統性風險機率。

    關鍵字:違約、信用風險、系統性風險、KMV-默頓模型、關聯擴散模


    In this paper, we introduce a model to analyze credit risk where the log-monetary reserves
    are driven by the coupled diffusions. The default is described as the assets of firm less
    than the book value of the liabilities in the maturity time T. In the different measure, the
    Merton’s model has a different presentation. In the empirical study, we use the Maximum
    Likelihood technique to estimate the parameters of the coupled diffusions, and analyze
    the systemic risk of the firms. Compared to the KMV-Merton model, the joint default
    probability given by the coupled diffusions is seen as a rare event treated as systemic risk.

    keywords: default, credit risk, systemic risk, KMV-Merton model, coupled
    diffusion model

    摘要i Abstract ii 1 Introduction 1 2 Credit risk models 5 2.1 The KMV-Merton model 2.1.1 The Merton’s model............... 6 2.2 The coupled diffusion model........ 10 3 The parameters estimation 14 3.1 The correlated Merton model.........14 3.2 The coupled diffusion model.........17 4 Simulations 20 4.1 Setup...............................20 4.2 Simulation result...................22 5 Empirical study 28 5.1 Data description....................28 5.2 Empirical result....................29 6 Conclusion 33 Appendices 34 References 42

    [1] Crosbie, P., Bohn, J. (2003) Modeling default risk, Moody’s KMV technical document.
    [2] Bharath, S. T., Shumway, T. (2004) Forecasting default with the KMV-Merton
    model. In AFA 2006 Boston Meetings Paper.
    [3] van Emmerich, C. (2006) Modelling correlation as a stochastic process. preprint, 6.
    [4] Fouque, J. P., Sun, L. H. (2013) Systemic risk illustrated. Handbook on Systemic
    Risk, 444-452.
    [5] Carmona, R., Fouque, J. P., Sun, L. H. (2013) Mean field games and systemic risk.
    Available at SSRN 2307814.
    [6] Fouque, J. P., Sircar, R., Sircar, K. (2009) Multiname and multiscale default modeling.
    Multiscale Modeling Simulation, 7: 1956-1978.
    [7] Fouque, J. P., Wignall, B. C., Zhou, X. (2008) Modeling correlated defaults: First
    passage model under stochastic volatility. Journal of Computational Finance, 11: 43.
    [8] Phillips, P. C., Yu, J. (2009) Maximum likelihood and Gaussian estimation of continuous
    time models in finance. In Handbook of financial time series, Springer Berlin
    Heidelberg, 497-530.
    [9] Brewer, K. D., Feng, Y., Kwan, C. C. (2012) Geometric Brownian Motion, Option
    Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling.
    Spreadsheets in Education, 5: 4.
    42
    [10] Maller, R. A., Muller, G., Szimayer, A. (2009) Ornstein–Uhlenbeck processes and
    extensions. In Handbook of financial time series, Springer Berlin Heidelberg, 421-
    437.
    [11] Cheridito, P., Kawaguchi, H., Maejima, M. (2003) Fractional ornstein-uhlenbeck processes.
    Electron. J. Probab, 8: 1-14.
    [12] Jessen, C., Lando, D. (2015) Robustness of distance-to-default. Journal of Banking
    and Finance, 50, 493-505.
    [13] Han, C. H. (2012). Importance Sampling Estimation of Joint Default Probability under
    Structural-Form Models with Stochastic Correlation. In Monte Carlo and Quasi-
    Monte Carlo Methods 2010, Springer Berlin Heidelberg, 409-418.
    [14] Han, C. H., Liu, W. H., Chen, T. Y. (2014) VaR/CVaR Estimation under Stochastic
    Volatility Models. International Journal of Theoretical and Applied Finance, 17:
    1450009.
    [15] Hillegeist, S. A., Keating, E. K., Cram, D. P., Lundstedt, K. G. (2004) Assessing the
    probability of bankruptcy. Review of accounting studies, 9: 5-34.
    [16] Lucas, D. J. (1995). Default correlation and credit analysis. The Journal of Fixed
    Income, 4: 76-87.
    [17] Nagpal, K., Bahar, R. (2001) Measuring default correlation. Risk, 14: 129-132.
    [18] Frey, R., McNeil, A. J., Nyfeler, M. (2001) Copulas and credit models. Risk,
    10(111114.10).
    [19] De Servigny, A., Renault, O. (2002) Default correlation: empirical evidence. Standard
    and Poor’s.
    [20] Zieliński, T. (2013) Merton’s and KMV Models in Credit Risk Management. Studia
    Ekonomiczne, 127: 123-135.
    [21] Franco, J. C. G. (2003) Maximum likelihood estimation of mean reverting processes.
    Real Options Practice.
    43
    [22] Chen, Y., Chu, G. (2014) Estimation of Default Risk Based on KMV Model—An
    Empirical Study for Chinese Real Estate Companies. Journal of Financial Risk Management,
    2014.
    [23] Valdivieso, L., Schoutens, W., Tuerlinckx, F. (2009) Maximum likelihood estimation
    in processes of Ornstein-Uhlenbeck type. Statistical Inference for Stochastic Processes,
    12: 1-19.
    44

    QR CODE
    :::