跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林瀚堂
Han-Tang Lin
論文名稱: Catching the Flames: Flare Activity of Wolf 359
指導教授: 陳文屏
Wen-Ping Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 46
中文關鍵詞: 恆星:閃焰恆星:磁場恆星:系外行星
外文關鍵詞: stars: flare, stars: magnetic field, stars: exoplanets
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 恆星閃焰事件是磁重聯作用的結果,尤其是光譜型態晚期恆星。具有對流層的太陽 型恆星會產生磁場,而那些閃焰即是在恆星表面上,有著相當大的磁通量的區域。一些 M 矮星,光譜類型越晚,對流性越強,更容易發生這種恆星閃焰,與沒有表面活動時期 的亮度相比,它們閃焰的發生頻率更高,而且能量顯著的更強。
    在這裡,我們報告了 Wolf 359 (GJ409; CN Leo) 的可見光波段閃焰事件。這顆年輕 (< 1 Gyr)的紅矮星(M6.5 Ve)是距離太陽第五近的恆星系統(2.4 pc),已知有頻繁的 的閃焰活動,伴隨著伽馬射線和 X 射線波段的爆發。我們的數據包括 2020 年 4 月共 7 天,有效時間為 27 小時在新疆使用兩台小型望遠鏡進行的觀測,其中一台是南山一米 廣角望遠鏡,另外一台則是最近從鹿林天文台搬遷的 TAOS 0.5 m 望遠鏡。觀測到 13 次能量大於 1029 ergs 的閃焰,包括一次“超級閃焰”事件(∼ 1031 ergs),意味著每兩 小時平均發生一次閃焰事件。每個閃焰事件我們進行參數化,包括用指數衰退去擬合衰 減階段。對於由兩個望遠鏡同時觀測到的“超級閃焰”事件,我們透過模擬兩台望遠鏡 採樣函數,恢復這個事件的“可能真相”。我們還討論了採樣函數如何改變真實的閃焰
    形狀,從而得出不同對能量估算的影響。


    Flare events are eruptive brightening observed on the surface of late-type stars. The solar-type stars known to have convection layers produce magnetic fields, and those areas exposed to considerable magnetic fluxes are visible as spots on the surface. Some M dwarfs, the later spectral types, the more so, being more convective, are even more prone to such stellar flares, with higher occurrence rates and significantly more energetic during the flares in comparison to the quiescent photometric luminosities.
    Here we report the optical flare activity of Wolf 359 (GJ409; CN Leo). This relatively young (< 1 Gyr) red dwarf (M6.5 Ve), being the fifth nearest stellar system (2.4 pc) to the Sun, is known for its frequent optical flares, along with gamma-ray and X-ray bursts. Our data consist of 27 hours spanning seven days in April 2020 of photometric monitoring with two small telescopes in Xinjiang, including a one-meter and one of the TAOS 0.5 m telescopes recently relocated from Lulin Observatory. A total of 13 flares with energies greater than 1029 ergs were detected, including one ”superflare” event (∼ 1031 ergs), implying an average occurrence rate of one flare per two hours. Each flare is parameterized and fitted the decay phase with exponential templates. For the ”superflare” event, which was observed simultaneously by two telescopes, we simulate how do the sampling functions influence the profiles and recover the ”possible truth” of this particular event. We also discuss how the sampling function reshapes the underlying profile, and therefore different energy budgets are derived.

    摘要 i Abstract ii Acknowledgement iii Contents iv List of Figures v List of Tables vi 1 Introduction 1 1.1 Solar Flares and Mechanism .................................................. 1 1.2 Stellar Flares .................................................................. 3 1.3 Wolf 359....................................................................... 5 2 Observations and Data Analysis 8 2.1 Parameterizing Flares......................................................... 13 3 Simulation 17 3.1 Methodology .................................................................. 18 3.1.1 Parameter Space....................................................... 18 3.1.2 Sampling Effects....................................................... 19 3.1.3 In Search of the Underlying Distribution ............................. 24 3.2 Simulation Results ............................................................ 24 3.2.1 3.2.2 4 Results Effects of Exposure and Readout ..................................... 24 Catching the Flare..................................................... 25 29 4.1 Flare parameters and energy distribution .................................... 29 4.2 Simulation summary .......................................................... 33 Bibliography 35

    Benz A. O., Güdel M., 2010, ARA&A, 48, 241
    Bradshaw S. J., Cargill P. J., 2005, A&A, 437, 311
    Cargill P. J., Mariska J. T., Antiochos S. K., 1995, ApJ, 439, 1034
    Carmichael H., 1964, NASSP, 50, 451
    Carrington R. C., 1859, MNRAS, 20, 13
    Cheng Z., Wang Y., Liu R., Zhou Z., Liu K., 2019, ApJ, 875, 93
    Cuntz M., Saar S. H., Musielak Z. E., 2000, ApJ, 533, L151
    Davenport J. R. A., et al., 2014, ApJ, 797, 122
    Fletcher L., et al., 2011, Space Sci. Rev., 159, 19
    Fuhrmeister B., Schmitt J. H. M. M., Hauschildt P. H., 2005, A&A, 439, 1137
    Gershberg R. E., 1972, Ap&SS, 19, 75
    Gosling J. T., Birn J., Hesse M., 1995, Geophys. Res. Lett., 22, 869
    Guinan E. F., Engle S. G., 2018, Research Notes of the American Astronomical Society, 2, 1
    Hawley S. L., Davenport J. R. A., Kowalski A. F., Wisniewski J. P., Hebb L., Deitrick R., Hilton E. J., 2014, ApJ, 797, 121
    Henry T. J., Jao W.-C., Subasavage J. P., Beaulieu T. D., Ianna P. A., Costa E., Méndez R. A., 2006, AJ, 132, 2360
    Hirayama T., 1974, Sol. Phys., 34, 323
    Hunt-Walker N. M., Hilton E. J., Kowalski A. F., Hawley S. L., Matthews J. M., 2012, PASP, 124, 545
    Ip W.-H., Kopp A., Hu J.-H., 2004, ApJ, 602, L53
    Kesseli A. Y., et al., 2019, AJ, 157, 63
    Kopp R. A., Pneuman G. W., 1976, Sol. Phys., 50, 85
    Lin C. L., Ip W. H., Hou W. C., Huang L. C., Chang H. Y., 2019, ApJ, 873, 97
    Lin C.-L., et al., 2021, AJ, 162, 11
    Maehara H., et al., 2012, Nature, 485, 478
    Mochnacki S. W., Zirin H., 1980, ApJ, 239, L27
    Nelson G. J., Robinson R. D., Slee O. B., Fielding G., Page A. A., Walker W. S. G., 1979, MNRAS, 187, 405
    Paudel R. R., Gizis J. E., Mullan D. J., Schmidt S. J., Burgasser A. J., Williams P. K. G., Youngblood A., Stassun K. G., 2019, MNRAS, 486, 1438
    Paudel R. R., Gizis J. E., Mullan D. J., Schmidt S. J., Burgasser A. J., Williams P. K. G., 2020, MNRAS, 494, 5751
    Pavlenko Y. V., Jones H. R. A., Lyubchik Y., Tennyson J., Pinfield D. J., 2006, A&A, 447, 709
    Ryan D. F., Chamberlin P. C., Milligan R. O., Gallagher P. T., 2013, ApJ, 778, 68 Shibayama T., et al., 2013, ApJS, 209, 5
    Sturrock P. A., Coppi B., 1966, ApJ, 143, 3
    Tuomi M., et al., 2019, arXiv e-prints, p. arXiv:1906.04644
    Weinberger A. J., Boss A. P., Keiser S. A., Anglada-Escudé G., Thompson I. B., Burley G., 2016, AJ, 152, 24
    Xin L. P., et al., 2021, ApJ, 909, 106

    QR CODE
    :::