| 研究生: |
黃昱銓 YU-CHUAN HUANG |
|---|---|
| 論文名稱: |
呼吸與自律神經系統調控下的心臟相位同步現象 The phase synchronization of heart under regulation of respiratory and autonomic nervous system |
| 指導教授: |
陳志強
黎璧賢 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 心肺同步 、同步程度 、同步圖 、交感神經 、經驗模態分解 |
| 外文關鍵詞: | Cardiorespiratory phase synchronization, Synchronization degree, Synchrogram, Autonomic nervous system, Empirical mode decomposition |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個運作功能正常的心臟是對於生物而言是十分重要的,所以心跳週期(R-R interval)是受到生理機制的嚴謹調控。許多調控心跳週期的機制經由許多的科學研究已被證實,本論文關注的調控機制有兩種:其一為呼吸性竇性心律不整(respiratory sinus arrhythmia, RSA),以呼吸變化調控心跳週期的生理機制,不同的呼吸方式會影響心率變異度,而在醫學報告顯示健康的心血管系統具有高強度的呼吸性竇性心律不整表現[2];其二為壓感反射(baroreflex),以頭部血壓變化調控心跳週期的生理機制,許多中樞神經會影響壓感反射的靈敏度,因此可作為中樞神經正常運作的依據[3]。
本論文藉由不同呼吸方式來改變呼吸竇性心律不整的強度,並且利用倒立機的角度改變造成頭部血壓的變化,進而改變壓感反射的強度。利用非線性動力學中的同步現象來觀測呼吸方式與倒立機角度改變對心跳週期的調控。同步現象表示耦合振盪系統(coupling oscillators system)中出現相位鎖定或是頻率鎖定的關係[4]。更進一步,論文著重於相位鎖定也就是相位同步(phase synchronization),並且利用相位同步圖與相位同步程度進行分析。實驗結果顯示在固定週期呼吸與倒立機週期擺動的情況下,多數受試者的相位同步圖與相位同步程度皆出現相位同步的跡象。
最後在共同調控中發現,呼吸訊號與倒立機擺動同相位時心率變異度增加,並且兩者為反相位時心率變異度減少。是否受試者可藉由同相位的共同調控使原有的心率變異度長期性的增加,抑或是增進受試者的生理健康,將是未來研究的方向。
The well-functional heart is vital to creature, so R-R interval should be regulated by rigorous mechanism of physiology. Many mechanisms of R-R interval regulation have been found, and this paper further focuses on two main mechanisms of R-R interval regulation. (i)Respiratory sinus arrhythmia (RSA): It is heart rate variability in synchrony with respiration, by which the R-R interval on an electrocardiogram (ECG) is shortened during inspiration and prolonged during expiration. (ii)Beroreflex: It is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure reflexively causes the heart rate to decrease and also causes blood pressure to decrease. Decreased blood pressure decreases baroreflex (BR) activation and causes heart rate to increase and to restore blood pressure levels.
The intensity of RSA is changed by different breathing modes, and the change of the angle of the tilting bed causes changes in the blood pressure of the head, thereby changing the intensity of BR. Synchronizaiton phenomena in nonlinear dynamics are used to observe the regulation of the breathing pattern and the change of the angle of the tilting bed to the heart period.
Synchronization indicates the relationship between phase-locked or frequency- locked in the coupling oscillators system [4]. Furthermore, this paper focuses on phase-locked which means phase synchronization, and analyzes phase synchronization by synchrongram and synchronization degree. The experiment results show that in the case of fixed-cycle breathing and tilting bed oscillation, most of the subjects' synchrongram and phase synchronization degree show signs of phase synchronization.
Finally, in the case of fixed-cycle breathing and tilting bed oscillation, it is found that the heart rate variability increases when the respiratory signal is in phase with the oscillation of the tilting bed, and the heart rate variability decreases when phase difference is anti-phase. Whether the subject can increase the original heart rate variability in a long-term experiment by co-regulation of the same phase, or enhance the physical health of the subject, will be the direction of future research.
[1] Spyer, KM. “Central nervous integration of cardiovascular control. ” vol.100,1, pages:109-128, 1982. The Company of Biologists Ltd.
[2] Ben-Tal, Alona, Sophie S. Shamailov, and Julian F.R. Paton. “Central Regulation of Heart Rate and the Appearance of Respiratory Sinus Arrhythmia: New Insights from Mathematical Modeling.” Mathematical biosciences 255 (2014): 71–82. PMC. Web. 4 Oct. 2018.
[3] Ogoh S, Fisher JP, Dawson EA, White MJ, Secher NH, Raven PB. Autonomic nervous system influence on arterial baroreflex control of heart rate during exercise in humans. The Journal of Physiology. 2005;566(Pt 2):599-611. doi:10.1113/jphysiol.2005.084541.
[4] Michael Rosenblum, Arkady Pikovsky, J¨urgen Kurths, Carsten Sch¨afer, and Peter Tass. Handbook of Biological Physics, Elsevier Science, Series Editor A.J. Hoff,Vol. 4, Neuro-informatics, Editors: F. Moss and S. Gielen, Chapter 9, pp. 279-321, 2001.
[5] H.R. Warner, A. Cox, A mathematical model of heart rate control by sympathetic and vagus efferent information, J. Appl. Physiol. 17 (2) (1962)349–355.
[6] En.wikipedia.org. (2018). Cardiac pacemaker. [online] Available at: https://en.wikipedia.org/wiki/Cardiac_pacemaker [Accessed 18 Jul. 2018].
[7] S. Dilmac, M. Korurek, ECG heart beat classification method based on
modified ABC algorithm, Appl. Soft Comput. 36 (2015) 641–655.
[8] Seon-Ah Cha, Yong-Moon Park, Time- and Frequency-domain Measures of Heart Rate Variability Predict Cardiovascular Outcome in Patients with Type 2 Diabetes, Diabetes Research and Clinical Practice, 2018,
[9] Evans, Subhadra et al. “Heart Rate Variability as a Biomarker for Autonomic Nervous System Response Differences between Children with Chronic Pain and Healthy Control Children.” Journal of Pain Research 6 (2013): 449–457. PMC. Web. 18 July 2018.
[10] Ubooks.pub. (2018). 4-2-3. Cardiac Muscle and Electrical Activity. [online] Available at: http://www.ubooks.pub/Books/ON/B0/E28R8369/P4C2S3U27. html [Accessed 18 Jul. 2018].
[11] Cornforth, David J., Mika P. Tarvainen, and Herbert F. Jelinek. “How to Calculate Renyi Entropy from Heart Rate Variability, and Why It Matters for Detecting Cardiac Autonomic Neuropathy.” Frontiers in Bioengineering and Biotechnology 2 (2014): 34.8
[12] Media.buzzle.com. (2018). [online] Available at: https://media.buzzle.com/media/images-en/gallery/human-biology/respiratory-system/500-respiratory-system-organs.jpg [Accessed 19 Jul. 2018].
[13] Anna Barrow, Jaideep J. Pandit, Lung ventilation and the physiology of
breathing, Surgery (Oxford), Volume 32, Issue 5,2014,Pages 221-227.
[14] Despopoulos, A., Silbernagel, S. &Weiser, J. (1991) Color Atlas of Physiology. Thieme Medical Publishers.
[15] Stern, R. M., Koch, K. L. & Muth, E. R. (2000) The gastrointestinal system.
[16] Sapolsky, R. M. (1998) Why zebras don't get ulcers: an updated guide to stress, stress-related diseases, and coping. W.H. Freeman and Company.
[17] Porges, S. W. (1995) Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301-318.
[18] Hughdal, K. (2001) Psychophysiology -The mind-body perspective. Harvard University Press, Cambridge.
[19] Berntson, G. G., Cacioppo, J. T. &Quigley, K. S. (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30, 183-196.
[20] M Di Rienzo, G Parati, A Radaelli, P Castiglioni. Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities. Published 9 March 2009.DOI: 10.1098/rsta.2008.0274
[21] The Effect of Baroreceptor Activity on Cardiovascular Regulation CONSTANTINOS H. DAVOS, LEWIS CERI DAVIES, MASSIMO PIEPOLI Royal Brompton Hospital & National Heart and Lung Institute, London, United Kingdom
[22] J.M. Fritschyelle, J.B. Charles, M.M. Jones, L.A. Beightol, D.L. Eckberg, Spaceflight alters autonomic regulation of arterial-pressure in humans, J. Appl. Physiol. 77 (4) (1994) 1776–1783.
[23] C.H. Davos, L.C. Davies, M. Piepoli, The effect of baroreceptor activity on
cardiovascular regulation, Hellenic J. Cardiol. 43 (2002) 145–155.
[24] F. Lador, E. Tam, M.A. Kenfack, M. Cautero, C. Moia, D.R. Morel, C. Capelli, G.Ferretti, Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia, Am. J. Physiol.-Reg. Integr. Comp. Physiol. 295 (2) (2008) R624–R632.
[25] P.I. Korner, M.J. West, J. Shaw, J.B. Uther, Steady-state properties of baroreceptor heart rate reflex in essential hypertension in man, Clin. Exp.
Pharmacol. Physiol. 1 (1) (1974) 65–76.
[26] J. Tank, A. Diedrich, E. Szczech, F.C. Luft, J. Jordan, Baroreflex regulation of heart rate and sympathetic vasomotor tone in women and men, Hypertension 45 (6) (2005) 1159–1164.
[27] Austen ML and Wilson GV. Increased vagal tone during winter in subsyndromal seasonal affective disorder. Biol Psychiatry 50: 28–34, 2001.
[28] Grossman P, Wilhelm FH, Kawachi I, and Sparrow D.Gender differences in psychophysiological responses to speech stress among older social phobics: congruence and incongruence between self-evaluative and cardiovascular reactions. Psychosom Med 63: 765–777, 2001.
[29] Hayano J, Yasuma F, Okada A, Mukai S, and Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and
circulatory efficiency. Circulation 94: 842–847, 1996.
[30] Blekhman, I. I. (1981) Synchronization in Science and Technology (Nauka,
Moscow, (in Russian); English translation: 1988, ASME Press, New York).
[31] Landa, P. (1996) Nonlinear Oscillations and Waves in Dynamical Systems
(Kluwer Academic Publishers, Dordrecht–Boston–London).
[32] Blekhman, I. I. (1971) Synchronization of Dynamical Systems (Nauka, Moscow),(in Russian).
[33] van der Pol, B., and van der Mark, J. (1928) Phil. Mag. 6, 763–775.
[34] Glass, L., and Mackey, M. C. (1988) From Clocks to Chaos: The Rhythms of
Life (Princeton Univ. Press, Princeton, NJ).
[35] Petrillo, G. A., and Glass, L. (1984) Am. J. Physiol. 246, 311–320.
[36] Bramble, D., and Carrier, D. (1983) Science 219, 251–256.
[37] Anishchenko, V. S., Balanov, A., Janson, N., Igosheva, N., and Bordyugov, G.
(1999) Phys. Rev. Lett. (submitted).
[38] Koepchen, H. (1991) in: Rhythms in Physiological Systems, eds H. Haken
and H. Koepchen, Vol. 55 of Springer Series in Synergetics (Springer, Berlin
Heidelberg), pp. 3–20.
[39] Schiek, M., Drepper, F., Engbert, R., Abel, H.-H., and Suder, K. (1998)
Nonlinear Analysis of Physiological Data, eds H. Kantz, J. Kurths, and
G. Mayer-Kress (Springer, Berlin) pp. 191–209.
[40] Seidel, H., and Herzel, H. (1998) IEEE Engineering in Medicine and
Biology17, 54–57.
[41] Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):857-70.Synchronization in the human cardiorespiratory system.
Schäfer C1, Rosenblum MG, Abel HH, Kurths J.
[42] Patzak, A., Schl¨uter, B., Orlow, W., Mrowka, R.,Gerhardt, D., Schubert, E., Persson, P. B.,Barschdorff, D. & Trowitzsch, E. [1997] “Linear and nonlinear properties of heart rate control in infants at risk,” Am. J. Physiol. 273, R540–R547.
[43] Kluge, K. A., Harper, R. M., Schechtman, V. L., Wilson,A. J., Hoffman, H. J. & Southall, D. P. [1988] “Spectral analysis assessment of respiratory sinus arrhythmia in normal infants and infants who subsequently died of sudden infant death syndrome,” Pediatr Res. 24(6), 677–682.
[44] Saul, J. P., Berger, R. D., Chen, M. H. & Cohen, R. J. [1989] “Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia,” Am. J. Physiol. 256, H153–H161.
[45] Raschke, F. [1987] “Coordination in the circulatory and respiratory systems,” Temporal Disorder in Human Oscillatory Systems, Springer Series in Synergetics, eds. Rensing, L., an der Heiden, U. & Mackey, M. C., Vol. 36 (Springer-Verlag, Berlin Heidelberg), pp. 152–158.
[46] Raschke, F. & Hildebrandt, G. [1987] “Coordination and synchronization in the cardiovascular respiratory system,” Chronobiology and Chronomedicine: Basic Research and Application, eds. Hildebrandt, G., Moog, R. & Raschke, F. (Peter Lang, Frankfurt a.M., Bern, NY, Paris), pp. 164–171.
[47] Rosenblum, M. G. & Kurths, J. [1998] “Analysing synchronization phenomena from bivariate data by means of the Hilbert transform,” Nonlinear Analysis of Physiological Data, eds. Kantz, H., Kurths, J. & MayerKress, G. (Springer, Berlin), pp. 91–99.
[48] Parlitz U., Junge L., Lauterborn W., Kocarev L. (1996): Experimental observation of phase synchronization. Phys. Rev. E. 54, 2115-2118
[49] Maja Bračič Lotrič, Aneta Stefanovska, Synchronization and modulation in the human cardiorespiratory system, Physica A: Statistical Mechanics and its Applications, Volume 283, Issues 3–4, 2000, Pages 451-461,
[50] Gil, E., Orini, M., Bailón, R., Vergara, J. M., Mainardi, L., & Laguna, P. (2010). Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiological Measurement, 31(9), 1271-1290. doi:10.1088/0967-3334/31/9/015
[51] Pulse sensor reference https://pulsesensor.com/
[52] Pressure sensor reference http://farnell.com/datasheets/673750.pdf
[53] Arduino Nano reference https://store.arduino.cc/usa/arduino-nano
[54] Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu (1998)The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, Series A, 454(1971), 903-995.
[55] D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, and H. Bettermann,“Oscillations of heart rate and respiration synchronize during poetry recitation,” Am J Physiol Heart Circ Physiol, vol. 287, 2004, pp. H579-587.
[56] D. Cysarz and A. Büssing, “Cardiorespiratory synchronization during Zen
meditation,” European Journal of Applied Physiology, vol. 95, 2005, pp. 88-95.[57] Mølgaard, H., Sørensen, K. E., & Bjerregaard, P. (1991). Attenuated 24-h heart rate variability in apparently healthy subjects, subsequently suffering sudden cardiac death. Clinical Autonomic Research, 1(3), 233–237. doi:10.1007/bf01824992]
[58] Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5, 258. http://doi.org/10.3389/fpubh.2017.00258