| 研究生: |
張楚珺 Chu-Chun Chang |
|---|---|
| 論文名稱: |
利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例 Constraining sources and sinks for trace species under an ensemble-based data assimilation framework with a regional chemical transport model: CO2 as an example |
| 指導教授: |
楊舒芝
Shu-Chih Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 系集轉換卡爾曼濾波器 、變數局地化 |
| 外文關鍵詞: | LETKF, Variable localization |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大氣化學模擬中,如何定量描述化學物質之地表通量乃一重要的課題。過去許多研究藉由同化化學物之觀測估計其未知的地表通量。然而這些研究大多使用全球模式或額外的大氣傳輸模式。為進一步探討於區域模式中,同化大氣化學物質與地表通量估計之影響,本研究使用區域大氣化學模式WRFChemT以及局地系集轉換卡爾曼濾波器(LETKF)進行OSSE實驗。
OSSE實驗設定上,以總排放量5.3×108 g/s積分之長時間模擬作為真實場,並分為(1)定量排放與(2)具有日夜變化之排放兩種情境假設。同化系統分別由大氣及化學同化子系統耦合而成,並分別同化氣象探空資料與化學複合物混合比。
研究結果顯示,在定量排放情境下,同化化學場觀測可成功估計無直接觀測資訊之地表通量,並改善化學場的分佈。然而在具日夜變化排放的情境下,受到模式誤差參數的影響,會使地表通量估計變得更加困難。為減小模式誤差對地表通量估計之影響,我們藉由模式化學場濃度變化資訊,反推地表通量隨時間變化之趨勢。研究結果顯示,嵌入地表通量時間變化之趨勢,可有效改善地表通量估計,並間接降低化學場誤差。我們也發現在日夜變化的情境假設下,系統對於初始場較敏感。因此,對於估計具日夜變化之排放源,初始系集化學場及地表通量的選取會是重要的關鍵。
To constrain the sources and sinks of the chemical compounds of interest at surface from limited observations, a chemical assimilation with the Local Ensemble Transform Kalman Filter (LETKF) has been developed and implemented to the WRF-Chem model. In this study, a two-tier method is used to update the meteorological and chemical states updated separately and simultaneously. To investigate the capability of the WRF-Chem/LETKF system, experiments are carried out under an observation simulation system experiments (OSSE) framework. Two scenarios of localized emissions are tested: constant emission and emission with diurnal cycle. Results indicate that the system can successfully provide reasonable estimate for the constant forcing case and improve the distribution of the chemicals. Strategies need to be applied for retrieving the time-varying emission.
曾忠一 (2006),大氣科學中的反問題 (上)、(下)。國立編譯館,1288頁。
張時禹等人 (2007),整合性中尺度環境評估報告子計畫五: 排放模式及直接耦合氣象與空氣品質模式。NSC-97-2752-M-008-006-PAE。
劉遵賢等人 (2002),台灣空氣品質模式Taiwan Air Quality Model (TAQM) 操作使用手冊(Version 1.11),33頁。
連國淵 (2009),颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大氣科學研究所論文,87頁。
高晟傑 (2012),利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響。國立中央大學大氣物理所碩士論文,70頁。
林冠任 (2012),改善區域系及卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究。國立中央大學大氣物理所碩士論文,68頁。
Anderson, J. L. (2001), An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903.
Anderson, J. L., and S. L. Anderson (1999), A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758.
Baker, D. F., S. C. Doney, and D. S. Schimel (2006), Variational data assimilation for atmospheric CO2, Tellus, Ser. B, 58, 359–365.
Baker, D. F., H. Bösch, S. C. Doney, D. O’Brien, and D. S. Schimel (2010), Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory, Atmos. Chem. Phys., 10, 4145–4165, doi:10.5194/acp-10-4145-2010.
Barker, D. M., W. Huang, Y-R. Guo, A. J. Bourgeois, and Q. N. Xiao (2004), A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. Weather Rev., 132, 897–914.
Bishop, C.H., B. J. Etherton, S. J. Majumdar (2001), Adaptive sampling with the ensemble transform Kalman filter. part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436.
Burgers, G., P. J. van Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724.
Chevallier, F., M. Fisher, P. Peylin, S. Serrar, P. Bousquet, F.-M. Bréon, A. Chédin, and P. Ciais, 2005: Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data , J. Geophys. Res., 110, D24309, doi:10.1029/2005JD006390.
Chevallier, F., F.‐M. Bréon, and P. J. Rayner (2007), Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.
Chevallier, F., L. Feng, H. Bösch, P. I. Palmer, and P. J. Rayner (2010), On the impact of transport model errors for the estimation of CO2 surface fluxes from GOSAT observations, Geophys. Res. Lett., 37, L21803, doi:10.1029/2010GL044652.
Crisp, D., et al. (2004), The Obiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700–709, doi:10.1016/j.asr.2003.08.062.
Dudhia, J., (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
Engelen, R. J., S. Serrar, and F. Chevallier (2009), Four‐dimensional data assimilation of atmospheric CO2 using AIRS observations, J. Geophys. Res., 114, D03303, doi:10.1029/2008JD010739.
Evensen, G. (1994), Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162.
Evensen, G. (2003), The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, 53, 343–367,
doi: 10.1007/s10236-003-0036-9.
Feng, L., P. I. Palmer, H. Bosch, and S. Dance (2009), Estimating surface CO2 fluxes from space‐borne CO2 dry air mole fraction observations using an ensemble Kalman filter, Atmos. Chem. Phys., 9, D03303, 2619–2633.
Gaspari, G., and S. E. Cohn (1999), Construction of correlation functions
in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723–757,
doi:10.1002/qj.49712555417.
GLOBALVIEW‐CO2 (2011), Cooperative Atmospheric Data Integration Project: Carbon Dioxide [CD‐ROM], http://www.esrl.noaa.gov/gmd/ccgg/globalview/, NOAA ESRL, Boulder, Colo.
Gurney, K. R., et al. (2004), Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks, Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/2003GB002111.
Hamill, T. M., J. S. Whitaker, and C. Snyder (2001), Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev.,129,2776–2790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.
Hong, S.-Y., and Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hollingsworth, A., et al. (2008), The Global Earth‐system Monitoring using Satellite and in‐situ data (GEMS) Project: Towards a monitoring and forecasting system for atmospheric composition, Bull. Am. Meteorol. Soc., 89, 1147–1164, doi:10.1175/2008BAMS2355.1.
Hunt, B. R., E. Kostelich, and I. Szunyogh (2007), Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230, 112–126, doi:10.1016/j.physd.2006.11.008.
Jazwinski, A. H. (1970), Stochastic Processes and Filtering Theory. Academic, New York.
Kain J. S. and J. M. Fritsch (1993), Convective parameterization for mesoscalemodels: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.
Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, Trans. ASME, Series D, J. Basic Eng., 82, 35-45.
Kalnay E. and S-C Yang, (2010), Accelerating the spin-up of Ensemble Kalman Filtering. Q. J. R. Meteorol. Soc., 136, 1644-1651.
Kang, J.-S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide (2011), “Variable localization” in an ensemble Kalman filter: Application to carbon cycle data assimilation, J. Geophys. Res., 116, D09110,doi:10.1029/2010JD01467.
Kang, J.-S., E. Kalnay, T. Miyoshi, J. Liu, and I. Fung (2012), Estimation of surface carbon fluxes with an advanced data assimilation methodology, J. Geophys. Res., in press.
Li, H., E. Kalnay, and T. Miyoshi (2009), Simultaneous estimation of covariance inflation and observation errors within ensemble Kalman filter, Q. J. R. Meteorol. Soc., 135, 523–533, doi:10.1002/qj.371.
Li, J., S. Hsu , T. Liu, C. Chiang , and J. Chang, (2007), A New Direct Coupled Regional-scale Meteorology and Chemistry Model, American Geophysical Union, Fall Meeting 2007, abstract #A23C-1472.
Liu, J., I. Fung, E. Kalnay, and J.-S. Kang (2011), CO2 transport uncertainties from the uncertainties in meteorological fields, Geophys. Res. Lett., 38, L12808, doi:10.1029/2011GL047213.
Liu, J., I. Fung, E. Kalnay, J.-S. Kang, E. T. Olsen, and L. Chen (2012), Simultaneous assimilation of AIRS Xco2 and meteorological observations in a carbon climate model with an ensemble Kalman filter, J. Geophys. Res., 117, D05309.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16663–16682.
Miller, R. N., M. Ghil, and F. Gauthiez (1994), Advanced data assimilation in strongly nonlinear dynamical systems., J. Atmos. Sci., 51, 1037–1056.
Miyazaki, K. (2009), Performance of a local ensemble transform Kalman filter for the analysis of atmospheric circulation and distribution of long‐lived tracers under idealized conditions, J. Geophys. Res., 114, D19304, doi:10.1029/2009JD011892.
Miyazaki, K., T. Maki, P. Patra, and T. Nakazawa (2011), Assessing the impact of satellite, aircraft, and surface observations on CO2 flux estimation using an ensemble‐based 4‐D data assimilation system, J. Geophys. Res., 116, D16306, doi:10.1029/2010JD015366.
Miyoshi, T. (2011), The Gaussian Approach to Adaptive Covariance Inflation and Its Implementation with the Local Ensemble Transform Kalman Filter. Mon. Wea. Rev., 139, 1519-1535. doi:10.1175/2010MWR3570.1.
NAPAP-Report 4 (1990), The Regional acid deposition model and engineering model. Superintendent of Documents Government Printing Office, Washington, DC 20402-9325.
Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans (2005), An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations, J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke (2004), Estimating the state of large spatio‐ temporally chaotic systems, Phys. Lett. A, 330, 365–370, doi:10.1016/j.physleta.2004.08.004.
Stephens, B. B., et al. (2007), Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2, Science, 316, 1732–1735.
Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker (2003), Ensemble square-root filters., Mon. Weather Rev., 131, 1485–1490.
Torn, R. D., G. J. Hakim, and C. Snyder (2006), Boundary Conditions for Limited-Area Ensemble Kalman Filters., Mon. Weather Rev., 134, 2490–2502.
Whitaker, J. S. and T. M. Hamill (2002), Ensemble data assimilation without perturbed observations, Mon. Weather Rev., 130, 1913–1924.
Yang, S-C, E. Kalnay and T. Miyohsi (2012), Improving EnKF spin-up for typhoon assimilation and prediction, Wea. Forecasting, 27, 878-897.
Yokota, T., H. Oguma, I. Morino, and G. Inoue (2004), A nadir looking SWIR FTS to monitor CO2 column density for Japanese GOSAT project, paper presented at 24th International Symposium on Space Technology and Science, Jpn. Soc. for Aeronaut. and Space Sci., Miyazaki, Japan.