| 研究生: |
藍坤志 Kuen-chih Lan |
|---|---|
| 論文名稱: |
含石墨烯加工液於多晶矽電化學磨削之研究 The effect on Polycrystalline Silicon Surface Roughness by Electrical Chemical Machining Grinding Using Graphene Oxide Suspension |
| 指導教授: |
顏炳華
Piin-hwa Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 太陽能電池 、多晶矽 、電化學磨削 、石墨烯加工液 |
| 外文關鍵詞: | solar cells, polycrystalline silicon, electrochemical grinding, machining liquid graphene |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為探討使用含石墨烯加工液對多晶矽進行電化學表面磨削加工特性之研究,研究架構共分成三大部份,第一部份為建置實驗設備與初期加工液濃度比較及實驗結果確認,過程中重複驗證及確保實驗結果的正確性與重現性。第二部份為由前所得之實驗結果做為加工參數基準,後續進行不同加工機制實驗,以了解加工特性之影響趨勢,並藉由電化學磨削加工之特性,進而得到較佳表面粗糙度之加工參數。第三部份則由電化學磨削實驗所得之實驗結果做進一步優化,於加工液中添加石墨烯進行表面粗糙度改善實驗,由實驗過程中發現添加石墨烯後其加工時,可平均分散至加工表面達到磨削去除之效果,相較於傳統機械磨削製程,則可得較好之表面粗糙度。
本論文研究結果得知,在相同實驗參數下,傳統機械磨削製程之表面粗糙度為0.092μm,平均摩擦係數為0.33μ,而KOH加工液添加石墨烯0.5%後,表面粗糙度為0.051μm,平均摩擦係數為0.10μ,其表面粗糙度相較於傳統機械磨削製程改善1.8倍,摩擦係數改善3.3倍。於摩擦力驗證實驗中可得知,加入石墨烯後因其材料優越的磨潤性,可使摩擦係數減少並且同時改善表面粗糙度。經由本研究可證實,在加工液中添加石墨烯可改善磨削表面粗糙度並可同時將加工摩擦力降低,其研究成果可應用於矽晶圓磨削製程,使得該製程簡化並提升加工效益,期望藉由此論文之研究成果作為產學界之應用參考。
There are some conclusions gotten from the experiment. The surface roughness and average friction coefficient are 0.092μm and 0.33μ by traditional mechanical grinding process; the surface roughness and average friction coefficient are 0.051μm and 0.10μ by adding 0.5% graphene into solution. The latter surface roughness and friction coefficient is 1.8 times and 3.3 times compared to the former.
The research shows that the tribological properties of graphene reduce the friction coefficient of solution and improve the surface roughness on workpiece. The research can be applied to grinding process of silicon wafer. The method can not only simplify the experiment steps but also enhance the process efficiency. The research is expected to be an application reference for industry and academic area.
參考文獻
〔1〕 B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, “Micro electrochemical milling”, Journal of Micromechanics and Microengineering, Vol.15, pp.124-129, 2005.
〔2〕 L. S. Andrade, S. C. Xavier, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, “Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration”, Electrochimica Acta, Vol.50, pp. 2623-2627, 2005.
〔3〕 E. S. Lee, “Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)”, The International Journal of Advanced Manufacturing Technology, Vol.16, pp.591–599, 2000.
〔4〕 K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for 3-dimensional micro structures”, IEEE MEMS, Vol.E80-C, pp.73-78, 1996.
〔5〕 S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture, Vol.44, pp.1297-1303, 2004.
〔6〕 H. Yamaguchi, T. Shinmura, “Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process”,Precision Engineering , Vol.28, pp.135–142, 2004.
〔7〕 W. Theisen, A. Schuermann, “Electro discharge machining ofnickel–titanium shape memory alloys”, Materials Science and Engineering A, Vol.378 , pp.200-204, 2004.
〔8〕 H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M.Kunieda, “High-quality cutting of polished single-crystal silicon bywire electrical discharge machining”, Precision Engineering ,Vol.29, pp.423-430, 2005.
〔9〕 P. Pec¸as, E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining,” International Journal of Machine Tools & Manufacture, Vol.43, pp.1465–1471, 2003.
〔10〕 Y. H. Guu, H. Hocheng, C. Y. Chou, C. S. Deng, “Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel”, Materials Science and Engineering A, Vol.358 , pp.37–43, 2003.
〔11〕 K. M. Shu, G. C. Tu, “Study of electrical discharge grinding using metal matrix composite electrodes”, International Journal of Machine Tools & Manufacture , Vol.43, pp.845-854, 2003.
〔12〕 L. S. Andrade, S. C. Xavier, R. C. Rocha-Filho, N. Bocchi, S. R.Biaggio, “Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration”, Electrochimica Acta , Vol.50, pp.2623-2627, 2005.
〔13〕 E. S. Lee, “Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)”, The International Journal of AdvancedManufacturing Technology , Vol.16, pp.591-599, 2000.
〔14〕 K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for3-dimensional micro structures”, IEEE MEMS , pp.73-78, 1996.
〔15〕 S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture, Vol.44, pp.1297-1303, 2004
〔16〕 H. Yamaguchi, T. Shinmura, “Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process”, Precision Engineering, Vol.28, pp.135-142, 2004.
〔17〕 Diana Berman, Ali Erdemir,Anirudha V. Sumant, “Few layer graphene to reduce wear and friction on sliding steel surfaces”, Carbon, Vol.54, pp.454-459, 2013.
〔18〕 Diana Berman, Ali Erdemir,Anirudha V. Sumant, “Graphene: a new emerging lubricant”, Materials Today, Volume, Vol.17, pp.31-42, Number1, 2014
〔19〕 Zhi-Lin Cheng, Xi-Xi Qin, “Study on friction performance of graphene-based semi-solid grease”, Chinese Chemical Letters , Vol.2894, pp.3, 2014.
〔20〕 J. Samuel,J. Rafiee, P. Dhiman, Z.-Z. Yu, N. Koratkar, “Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids”, American Chemical Society , Vol.115, pp.3410-3415, 2011.
〔21〕 詹福賜,精密陶瓷加工法,全華科技圖書出版,民國八十三年。
〔22〕 L. M. Cook, Chemical processes in glass polishing, Journal ofNon-Crystalline Solids, Vol. 120, pp.152-171, 1990.
〔23〕 V.K. Jain, “Simulation of Surface Generated in Abrasive Flow Machining(AFM) Process”, Robotics and Computer Integrated Manufacturing ,Vol.15, pp.403-412, 1999.
〔24〕 B. Bhushan, Introduction to tribology, by John Wiley and Sons, New York, 2002.
〔25〕 吳昱磊,「液體磨料降溫法應用於不鏽鋼拋光之研究」,國立中央大學,碩士論文,民國102年。
〔26〕 廖振淵,「行星式機構結合二維振動輔助磁力研磨應用於SUS304不鏽鋼曲面凹槽之研究」,國立中央大學,碩士論文,民國102年。
〔27〕 吳承翰,「電化學精修微型球狀電極之研究」,國立中央大學,碩士論文,民國102年。
〔28〕 陳孝武,「精密伺服控制系統之摩擦力分析及補償研究」,逢甲大學,碩士論文,民國91年。