跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葛琴紗
Ckysa Glenn Velquesincky
論文名稱: 使用熱處理生長單晶銅箔
Growth of Single Crystalline Copper Foils by Heat Treatment
指導教授: 陸大安
Dah-An Luh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 73
中文關鍵詞: 表面物理單晶
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅單晶因為其具有的表面特性而引起強烈的興趣與研究動機,它可用於一些材料的成長,如石墨烯及六方氮化硼。然而,製作銅單晶的過程通常很複雜且成本高昂。最近一些研究指出,透過熱處理的方式將多晶銅箔轉化為大面積的單晶銅箔是可行的。這個方式能夠簡化將多晶銅箔轉化為單晶銅箔的過程,並且降低成本。
    在本研究中,透過在Ar/H2混和氣體中的熱處理,我們成功地將市面上購買的多晶銅箔轉化為單晶銅箔。我們實際測試了不同的實驗參數,其中包含銅箔的厚度(30 μm,50 μm及80 μm)、加熱時間以及加熱溫度。在生長條件優化之後,我們得到有著Cu(111)表面的單晶箔片。我們利用低能量電子繞射儀(LEED)、歐傑電子能譜術(AES)以及掃描穿隧顯微鏡(STM)來檢測這些箔片的表面結構。我們的結果顯示,單晶銅箔可作為表面研究中高度有序薄膜的基底,並且可以代替昂貴的銅單晶。


    Single crystal copper has attracted great interests because of its valuable surface properties that can be used to grow some materials, such as graphene and hexagonal boron nitride. However, the methods for the fabricating copper single crystals are usually complex and costly. A few recent studies have demonstrated that it is feasible to transform thin polycrystalline copper foils into large-area single crystalline foils with heat treatment methods, offering a simple and less expensive way to obtain single crystals from polycrystalline copper foils.
    In this study, we obtain single-crystalline copper foils from commercial polycrystalline copper foils by heat treatment under the mixture of gas Ar/H2. Different parameters of heat treatment are tested such as thickness of Cu foils (30 μm, 50 μm, and 80 μm), duration, and temperature. After the optimization of growth condition, Cu(111) single crystal is obtained. The surface structure is characterized by Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), and Scanning Tunnelling Microscopy (STM). Our results demonstrate that the single-crystal Cu foils can be used as substrate for highly ordered thin film for surface studies, and can be an inexpensive alternative to the Cu single crystals.

    Chapter 1 Introduction 1 Chapter 2 Literature Survey 3 2.1 The Structure of Cu Single Crystals 3 2.2 The Growth of Cu Single Crystal 5 2.3 Hydrogen Embrittlement in Copper 8 2.4 Growth of thin films on Cu(111) Surface 9 Chapter 3 Experimental Set Up 20 3.1 Ultra-High Vacuum System 20 3.1.1 Dry-Scroll Pump 20 3.1.2 Turbomolecular Pump 20 3.1.3 Ion Pump 21 3.1.4 Titanium Sublimation Pump (TSP) 21 3.1.5 Cold Cathode Gauge 22 3.1.6 Ionization Gauge 22 3.2 Low Energy Electron Diffraction 23 3.3 Sputter Gun 25 3.4 Auger Electron Spectroscopy 25 3.5 STM 26 3.6 Experimental Set-Up 27 3.7 Evaporator 28 3.8 Experimental Methods 29 3.8.1 Sample Growth: Preparation 29 3.8.2 Sample Growth: Heat treatment 29 3.8.3 Oxidation 30 3.8.4 Removing Oxide Layers 30 3.8.5 Sample Characterization by LEED 31 3.8.6 Grain Measurement 32 Chapter 4 Results and Discussions 44 4.1 Different Conditions of Heat Treatment 45 4.1.1 Thickness 45 4.1.2 Duration of Heat Treatment 45 4.1.3 Temperature 46 4.1.4 Contact-Free Annealing 46 4.1.5 Conclusion 46 4.4 Further Discussion and Possible Future Works 49 Chapter 5 Conclusion 59 Bibliography 60

    Bibliography
    [1] Cho, Y. C., Lee, S., Ajmal, M., Kim, W.-K., Cho, C. R., Jeong, S.-Y., Park, J. H., Park, S. E., Park, S., Pak, H.-K., & Kim, H. C. (2010). Copper better than silver: Electrical resistivity of the grain-free single-crystal copper wire. Crystal Growth & Design, 10(6), 2780–2784. https://doi.org/10.1021/cg1003808
    [2] Ajmal, M., Lee, S., Cho, Y. C., Kim, S. J., Park, S. E., Cho, C. R., & Jeong, S.-Y. (2012). Fabrication of the best conductor from single-crystal copper and the contribution of grain boundaries to the Debye Temperature. CrystEngComm, 14(4), 1463–1467. https://doi.org/10.1039/c1ce06026k
    [3] Versnyder, F. I., & Shank, M. E. (1970). The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering, 6(4), 213–247. https://doi.org/10.1016/0025-5416(70)90050-9
    [4] Jin, S., & Ruoff, R. S. (2019). Preparation and uses of large area single crystal metal foils. APL Materials, 7(10), 100905. https://doi.org/10.1063/1.5114861
    [5] Jin, S., Huang, M., Kwon, Y., Zhang, L., Li, B-W., Oh, S., Dong, J., Luo, D., Biswal, M., Cunning, B. V., Bakharev, P. V., Moon, I., Yoo, W. J., Camacho-Mojica, D. C., Kim, Y.-J., Lee, S. H., Wang, B., Seong, W. K., Saxena, M., Ding, F., Shin, H-J., Ruoff, R. S. (2018). Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 362(6418), 1021–1025. https://doi.org/10.1126/science.aao3373
    [6] Xu, X., Zhang, Z., Dong, J., Yi, D., Niu, J., Wu, M., Lin, L., Yin, R., Li, M., Zhou, J., Wang, S., Sun, J., Duan, X., Gao, P., Jiang, Y., Wu, X., Peng, H., Ruoff, R. S., Liu, Z., Yu, D., Wang, E., Ding, F., Liu, K. (2017). Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial cu foil. Science Bulletin, 62(15), 1074–1080. https://doi.org/10.1016/j.scib.2017.07.005
    [7] Wu, M., Zhang, Z., Xu, X., Zhang, Z., Duan, Y., Dong, J., Qiao, R., You, S., Wang, L., Qi, J., Zou, D., Shang, N., Yang, Y., Li, H., Zhu, L., Sun, J., Yu, H., Gao, P., Bai, X., Jiang, Y., Wang Z-J., Ding, F., Yu, D., Wang, E., Liu, K. (2020). Seeded growth of large single-crystal copper foils with high-index facets. Nature, 581(7809), 406–410. https://doi.org/10.1038/s41586-020-2298-5
    [8] Wang, L., Xu, X., Zhang, L., Qiao, R., Wu, M., Wang, Z., Zhang, S., Liang, J., Zhang, Z., Zhang, Z., Chen, W., Xie, X., Zong, J., Shan, Y., Guo, Y., Willinger, M., Wu, H., Li, Q., Wang, W., Gao, P., Wu, S., Zhang, Y., Jiang, Y., Yu, D., Wang, E., Bai, X., Wang, Z-J., Ding, F., Liu, K. (2019). Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 570(7759), 91–95. https://doi.org/10.1038/s41586-019-1226-z
    [9] Callister, W.D. and Rethwisch, D. G. (2011). Materials Science and Engineering An Introduction Eight Edition. Wiley & Sons
    [10] Deal, A., Hooghan, T., & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy, 108(2), 116–125. https://doi.org/10.1016/j.ultramic.2007.03.010
    [11] Lüth, H. (2015). Solid Surfaces, Interfaces and Thin Films. 6th ed. Cham: Springer International Publishing
    [12] Attard, G. and Barnes, C. (1998). Surfaces. New York: Oxford University Press.
    [13] Kim, S. J., Kim, S., Lee, J., Jo, Y., Seo, Y. S., Lee, M., Lee, Y., Cho, C. R., Kim, J., Cheon, M., Hwang, J., Kim, Y. I., Kim, Y. H., Kim, Y. M., Soon, A., Choi, M., Choi, W. S., Jeong, S. Y., & Lee, Y. H. (2021). Color of copper/copper oxide. Advanced Materials, 33(15), 2007345. https://doi.org/10.1002/adma.202007345
    [14] Zhang, Z., Xu, X., Zhang, Z., Wu, M., Wang, J., Liu, C., Shang, N., Wang, J., Gao, P., Yu, D., Wang, E., & Liu, K. (2018). Identification of copper Surface index by Optical Contrast. Advanced Materials Interfaces, 5(18), 1800377. https://doi.org/10.1002/admi.201800377
    [15] Girard, Y., Chacon, C., de Abreu, G., Lagoute, J., Repain, V., & Rousset, S. (2013). Growth of Bi on Cu(111): Alloying And dealloying transitions. Surface Science, 617, 118–123. https://doi.org/10.1016/j.susc.2013.06.015
    [16] Kaminski, D., Poodt, P., Aret, E., Radenovic, N., & Vlieg, E. (2005). Surface Alloys, Overlayer And Incommensurate Structures of Bi on Cu(111). Surface Science, 575(3), 233–246. https://doi.org/10.1016/j.susc.2004.11.001
    [17] Varian Associates, Inc. (1992). Basic Vacuum Practice 3rd Edition. Lexington
    [18] Fukuda, T., & Menz, W. (1998). Handbook of Sensors and Actuators. Elsevier Science.
    [19] Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C., & Renner, C. (2007). Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics, 79(1), 353–419. https://doi.org/10.1103/revmodphys.79.353

    QR CODE
    :::