跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄒宗桓
CHUNG-HUAN CHOU
論文名稱: 部分受試者操作曲線下的面積及Youden指數之聯合信賴域
Joint confidence region estimation for partial AUC and partial Youden index
指導教授: 陳玉英
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 38
中文關鍵詞: Youden指數偽陽率聯合信賴域受試者操作曲線
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 診斷醫學中經常利用生物指標診斷受試者是否罹患某一研究中的疾病。一般是根據病人與非病人的生物指標,建立受試者操作曲線 (Receiver Operating Characteristic curve; 簡稱為ROC曲線)。之後,計算此一曲線下的面積 (Area under the ROC curve; 簡記為 AUC ),評估該生物指標診斷疾病的鑑別能力;此外,也會計算其 Youden 指數,一併求出適當的臨界值。事實上,診斷醫學中也經常希望非病人的誤診率不宜過高。為研究非病人誤診率低於一定水準的部分 AUC 及部分 Youden 指數;分別記做 pAUC 及 J_p ,本文分別在生物指標有無分布假設下建構 pAUC 及 J_p 的有母數及無母數聯合信賴域。本文進一步利用模擬研究上述兩種聯合信賴域的涵蓋機率及信賴域面積,結果顯示在特定分布下所建構的有母數信賴域在維持信賴水準及信賴域面積表現皆佳;但是,當分布不符時,無母數的信賴域會有較為穩健的表現。本文最後分析一筆胰臟癌的資料說明所提方法的應用。


    In medical disgnostics, biomarkers are usually employed to diagnosis if the subject suffers the disease under study. In general, the receiver operating characteristic curve (ROC) is constructed based on the biomarkers of diseased and non-diseased. The area under the ROC curve (AUC) is then calculated to evaluate the diagnostic ability of the biomarkers. In addition, Youden index is computed along with the cut off value. Note that, in practice, the false positive rate (FPR) should be controlled. Therefore, AUC and Youden index under the FPR constraint or partial AUC and partial Youden index are needed. In this thesis, we find the joint parametric and non-parametric confidence sets of the partial AUC and partial Youden index separately. A simulation study is conducted to investigate the coverage probability and area of the confidence set. Results show that the parametric confidence set is good on holding its confidence level and has reasonable area when the assumed distributions are correct. However, when the distributions are not feasible, the non-parametric confidence set is more robust on the level and area performance. A real data set is from a case-control study that includes pancreatic cancer subjects and pancreatic case-free subjects is finally illustrated to demonstrate the application of the proposed joint confidence sets.

    中文摘要 i Abstract ii 致謝詞 iii 圖目次 vi 表目次 vii 第一章 研究動機及目的 1 第二章 文獻回顧 4 2.1 AUC與pAUC的估計 4 2.2 Youden 指數及 Jp 的估計 6 第三章 統計方法 8 3.1 常態分布下pAUC及 Jp 的聯合信賴域 8 3.2 韋伯分布下的聯合信賴域 10 3.3 無母數下的聯合信賴域 11 第四章 模擬研究 13 4.1 模擬方法 13 4. 2 模擬結果 14 第五章 實例分析 16 第六章 結論與建議 19 參考文獻 20 附錄 22

    1. Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph, Journal of Math. Psychology, 12, 387-415.
    2. Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B. 26, 211-252.
    3. DeLong, E., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operation characteristic curves, a non-parametric approach, Biometrics, 44, 837-845.
    4. Faraggi, D. and Reiser, B. (2002). Estimation of the area under the ROC curve, Statistics in Medicine, 21, 3093-3106.
    5. Fluss, R., Faraggi, D. and Reiser, B. (2005). Estimation of the Youden index and its associated cutoff point, Biometrical Journal, 47(4):458–472.
    6. Hsiao, J.K., Barko, J.J. and Potter, W.Z. (1989). Diagnosing diagnoses: receiver operating characteristic methods and psychiatry, Archives of General Psychiatry 46, 664-667.
    7. McClish DK. (1989). Analyzing a portion of the ROC curve, Medical Decision Making, 9, 190-195.
    8. Olkin I, Finn J.D. (1995). Correlation redux, Psychological Bulletin, 118, 155-164.
    9. Perkins, K.J. and Schisterman, E.F. (2005). The Youden Index and the optimal cut-point corrected for measurement error, Biometrical Journal, 4, 428-441.
    10. Reiser, B., Guttman, I. (1987). A comparison of three point estimates for P(Y<X) in the normal case, Computational Statistics and Data Analysis, 5, 59-66.
    11. Schisterman, E.F., Faraggi, D., and Reiser, B. (2004). Adjusting the generalized ROC curve for covariates, Statistic in Medicine, 23, 3319-3331
    12. Smith, P.J. and Thompson, T.J. (1996) Correcting for confounding in analyzing receiver operating characteristic curves, Biometrical Journal, 38, 857-863.
    13. Wieand, S., Gail, M.H., James, B.R., and James, K.L.(1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data, Biometrika,76, 585-592.
    14. Wang, Z.F. and Chang, Y.C. (2011). Marker selection via maximizing the partial area under the ROC curve of linear risk scores, Biostatistics, 12, 369-385.
    15. Youden, W.J. (1950). Index for rating diagnostic tests, Cancer 3, 32-35.
    16. Yin, J.J. and Tian, L.L. (2013). Joint confidence region estimation for area under ROC curve and Youden index, Statistic in Medicine, 33, 985-1000.
    17. Yeh, K.C. and Kwan, K.C. (1978). A comparison of numerical algorithms by trapezoidal, LaGrange, and spline approximations, Journal of Pharmacokinetics and Biopharmaceutics, 6, 79‐98.
    18. Zou KH, Hall W. (2000). Two transformation models for estimating an ROC curve derived from continuous data, Journal of Applied Statistics, 27(5), 621–631.
    19. 陳秀琴 (2011). 針對右偏分布資料進行兩個醫學診斷方法之相等性檢定。國立中央大學統計研究所碩士論文。
    20. 蔡任勛 (2012). 診斷醫學中 Youden 指數之推廣研究。國立中央大學統計研究所碩士論文。
    21. 陶漢威 (2012). 針對受試者操作特徵曲線下部分面積建立的非劣性檢定。國立中央大學統計研究所碩士論文。

    QR CODE
    :::