| 研究生: |
黃宇辰 Yu-Chen Huang |
|---|---|
| 論文名稱: |
以視覺為基礎的車對車偵測及追蹤系統 A Vision-based Vehicle to Vehicle Detection and Tracking System |
| 指導教授: |
曾定章
Din-Chang Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 智慧型運輸系統 、前車追蹤 、前車偵測 |
| 外文關鍵詞: | Vehicle tracking, Vehicle detection, ITS |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,人民生活素質提昇,對於行的安全越加重視,因此車輛安全駕駛的研究也變得越重要。為了車輛輔助安全駕駛,我們將一部相機架設在車上,用來偵測及追蹤前車,並與其他系統整合,分析行車狀況。
我們所提出的前車追蹤系統共分為兩個狀態 : 偵測與追蹤狀態。在偵測狀態中,我們利用水平邊及車子底下陰影來偵測可能的前車位置,然後使用垂直邊和對稱性來偵測前車。之後,再以一個最小矩形框來代表我們所找到的前車區塊。最後再利用車寬和車道寬的比例、對稱性、及區塊色彩標準差來驗證是否為前車區塊。在追蹤狀態,我們先預測前車位置,然後在預測位置的附近再去做搜尋,找到前車區塊後,我們利用車寬與車道寬的比例、對稱性、區塊色彩標準差、及透視投影的觀念來驗證是否為車輛;若是車輛,則比對是否為之前所找到的車輛,如果比對成功,則更新前車區塊。
我們以多種的天候狀況影像 ; 例如,晴天、陰天、多雲、和雨天等,來測試我們的系統。從實驗的結果顯示,我們所提出的系統可以在不同的天候狀況下,即時地偵測及追蹤前車。
In the recent years, the study on safe driving becomes more and more important. To aid the safe driving, we use a camera mounted on a vehicle to capture road scenes for detecting preceding vehicles.
The proposed system consists of three parts. In the first part, we use horizontal edge and underneath shadow of a possible preceding vehicle to locate the vehicle. We then use the vertical edge and symmetry property to detect the vehicle. Finally, we represent the possible vehicle by a detected box. In the second part, we use the lane width, vehicle width, symmetry, and color variance of pixels in the detected box to verify the vehicle. In the third part, we track and search vehicles in a narrow area. The first and third parts are independently executed following by the second part. That is we detect or track a preceding vehicle based on the current situation, then verify the detected or tracked objects.
In the experiments, the proposed detector is evaluated on several different weather conditions such as sunny day, misty day, dusky day, cloudy day, and rainy day. From the experimental results, we find that the proposed approach can robustly and accurately detect or track the preceding vehicles in real time.
[1] Araki, S., T. Matsuoka, H. Takemura, and N. Yokoya, “Real-time tracking of multiple moving objects in moving camera image sequences using robust statistics,” in Proc. IEEE Int’l Conf. on Pattern Recognition, Brisbane, Australia, Aug.16-20, 1998, pp.1433-1435.
[2] Araki, S., T. Matsuoka, N. Yokoya, and H. Takemura, "Real-time tracking of multiple moving object contours in a moving camera image sequence," IEICE Trans. on Information and Systems, Vol.E83-D, No.7 pp.1583-1591, July 2000.
[3] Bensrhair, A., M. Bertozzi, A. Broggi, P. Miche, and S. Mousset, G. Toulminet, “A cooperative approach to vision-based vehicle detection,” in Proc. IEEE Conf. on Intelligent Transportation Systems, Oakland, CA, Aug.25-29, 2001, pp.207-212.
[4] Bensrhair, A., A. Bertozzi, A. Broggi, A. Fascioli, S. Mousset, and G. Toulminet, “Stereo vision-based feature extraction for vehicle detection,” in Proc. IEEE Intelligent Vehicle Sym., Versailles, France, June 7-21, 2002, pp.465-470.
[5] Bertozzi, M. and A. Broggi, “Real-time lane and obstacle detection on the GOLD system,” in Proc. IEEE Intelligent Vehicles Sym., Tokyo, Japan, Sep.19-20, 1996, pp.213-218.
[6] Bertozzi, M., A. Broggi, and S. Castelluccio, “A real-time oriented system for vehicle detection,” Journal of Systems Architecture, pp.317-325, Mar. 1997.
[7] Bertozzi, M., A. Broggi, G. Conte, and A. Fascioli, “Obstacle and lane detection on ARGO,” in Proc. IEEE Conf. on Intelligent Transportation System, Boston, MA, Nov.9-12, 1997, pp.1010-1015.
[8] Bertozzi, M. and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Trans. Image Processing, vol.7, pp.62-81, Jan. 1998.
[9] Bertozzi, M., A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision-based vehicle detection,” in Proc. IEEE Intelligent Vehicles Sym., Dearborn, MI, Oct.3-5, 2000, pp.39-44.
[10] Betke, M., E. Haritaoglu, and L. S. Davis, “Multiple vehicle detection and tracking in hard real time,” in Proc. IEEE Intelligent Vehicles Sym., Tokyo, Japan, Sep.19-20, 1996, pp.351–356.
[11] Betke, M., E. Haritaoglu and L. S. Davis, "Real-time multiple vehicle detection and tracking from a moving vehicle," IEEE Trans. Machine Vision and Applications, pp.69-83, Sep. 2000.
[12] Broggi, A., M. Bertozzi, A. Fascioli, C. Guarino Lo Bianco, and A. Piazzi, “Visual perception of obstacles and vehicles for platooning,” IEEE Trans. Intelligent Transportation Systems, vol.1, pp.164-176, Sep. 2000.
[13] Bucher, T., C. Curio, J. Edelbrunner, C. Igel, D. Kastrup, I. Leefken, G. Lorenz, A. Steinhage, and W. von Seelen, “Image processing and behavior planning for intelligent vehicles,” IEEE Trans. Industrial Electronics, vol.50, Issue.1, pp.62-75, Feb. 2003.
[14] Chapuis, R., F. Marmoiton, R. Aufrere, F. Collange, and J. Derutin, “Road detection and vehicles tracking by vision for an on-board ACC system in the VELAC vehicle,” in Proc. IEEE Int’l Conf. on Information Fusion, Paris, France, July 10-13, 2000, pp.11-18.
[15] Chern, M.-Y. and B.-Y. Shyr, “Locating nearby vehicles on highway at daytime based on the front vision of a moving car,” in Proc. IEEE Conf. on Robotics and Automation, Taipei, Taiwan, Sep.14-19, 2003, pp.2085-2090.
[16] Chu J., L. Ji, L. Guo, Libibing, and R. Wang, “Study on method of detecting preceding vehicle based on monocular camera,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, June 14-17, 2004, pp.750-755.
[17] Clady, X., F. Collange, F. Jurie, and P. Martinet, “Cars detection and tracking with a vision sensor,” in Proc. IEEE Intelligent Vehicles Sym., Columbus, Ohio, June 9-11, 2003, pp.593-598.
[18] Du, Y. and N.P. Papanikolopoulos, “Real-time vehicle following through a novel symmetry-based approach,” in Proc. IEEE Int’l Conf. on Robotics and Automation, Albuquerque, NM, Apr.20-25, 1997, pp.3160-3165.
[19] Dubuisson M. P., S. Lakshmanan, and A. K. Jain, “Vehicle segmentation and classification using deformable templates," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18, Issue 3, pp.293-308, Mar. 1996.
[20] Ferryman J., A. Worrall, G. Sullivan, and K. Baker, “A generic deformable model for vehicle recognition,” in Proc. Conf. on British Machine Vision, Birmingham, Sep.11-14, 1995, pp.127-136.
[21] Giachetti, A., M. Campani, and V. Torre, “The use of optical flow for road navigation,” IEEE Trans. on Robotics and Automation, vol.14, pp.34-48, Feb. 1998.
[22] Goerick, C., N. Detlev, and M. Werner, “Artificial neural networks in real-time car detection and tracking applications,” IEEE Trans. Pattern Recognition Letters, vol.17, pp.335-343, Apr. 1996.
[23] Heisele, B. and W. Ritter, “Obstacle detection based on color blob flow,” in Proc. IEEE Intelligent Vehicles Sym., Detroit, MI, Sep.25-26, 1995, pp.282-286.
[24] Hoffmann, C., T. Dang, and C. Stiller, “Vehicle detection fusing 2D visual features,” in Proc. IEEE Intelligent Vehicles Sym., Parma, Italy, June 14-17, 2004, pp.280-285.
[25] Hu, Z., and K. Uchimura, “Tracking cycle: a new concept for simultaneous tracking of multiple moving objects in a typical traffic scene,” in Proc. IEEE Intelligent Vehicles Sym., Dearborn, MI, Oct.3-5, 2000, pp.233–239.
[26] Huang, S.-S., C.-J. Chen, P.-Y. Hsiao, and L.-C. Fu, ”On-board vision system for lane recognition and front-vehicle detection to enhance driver''s awareness,” in Proc. IEEE Int’l Conf. on Robotics and Automation, New Orleans, Apr.26 - May 1, 2004, pp.2456-2461.
[27] Kalinke, T., C. Tzomakas, and W. von Seelen, “A texture-based object detection and an adaptive model-based classification,” in Proc. IEEE Intelligent Vehicles Sym., Stuttgart, Germany, Oct. 1998, pp.143-148.
[28] Koller, D., N. Heinze, and H. Nagel, “Algorithmic characterization of vehicle trajectories from image sequences by motion verbs,” in Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, Maui, HI, June 3-6, 1991, pp.90-95.
[29] Kyo, S., T. Koga, K. Sakurai, and S. Okazaki, “A robust vehicle detecting and tracking system for wet weather conditions using the IMAP-VISION image processing board,” in Proc. IEEE Int’l Conf. on Intelligent Transportation Systems, Tokyo, Japan, Oct.5-8, 1999, pp.423-428.
[30] Meier, E. B. and F. Ade, “Tracking cars in range image sequences,” in Proc. IEEE Conf. on Intelligent Transportation System, Boston, MA, Nov.9-12, 1997, pp.105-110.
[31] Raboisson, S. and P. Schmouker, “Obstacle detection in highway environment by color CCD camera and image processing prototype installed in a vehicle,” in Proc. IEEE Intelligent Vehicles Sym., Paris, France, Oct.24-26, 1994, pp.44-49.
[32] Regensburger, U., and V. Graefe, “Visual recognition of obstacles on roads,” in Proc. IEEE Int’l Conf. on Intelligent Robots and Systems, Munich, Germany, Sep.12-16, 1994, pp.980-987.
[33] Rojas, J. C., and J. D. Crisman, “Vehicle detection in color images,” in Proc. IEEE Conf. on Intelligent Transportation System, Boston, MA, Nov.9-12, 1997, pp.403-408.
[34] Schwarzinger, M., T. Zielke, D. Noll, M. Brauckmann, and W. von Seelen, “Vision-based car-following detection tracking and identification,” in Proc. IEEE Intelligent Vehicles Sym., Detroit, MI, June 29 - July 1, 1992, pp.24-29.
[35] Seol, S.-W., J.-H. Jang, H.-S. Kim, C.-H. Lee, and K.-G. Nam, “An automatic detection and tracking system of moving objects using double difference based motion estimation,” in Proc. on Int’l Technical Conf. on Circuits/Systems, Computers and Communications, Phoenix Park, Korea, July 7-9, 2003, pp.260-263.
[36] Srinivasa, N., “Vision-based vehicle detection and tracking method for forward collision warning in automobiles,” in Proc. IEEE Intelligent Vehicle Sym., Malibu, CA, Jun.17-21, 2002, pp.626-631.
[37] Sun, Z., G. Bebis, and R. Miller, "On-road vehicle detection using optical sensors: A review," in IEEE Int’l Conf. on Intelligent Transportation Systems, Washington, DC, Oct.3-6, 2004, pp.585-590.
[38] Van Leeuwen, M. B. and F. C. A. Groen, Vehicle Detection with A Mobile Camera, Technical report, Computer Science Institute, Univ. of Amsterdam, Netherlands, Oct. 2001.
[39] Van Leuven J., M. B. van Leeuwen, and F. C. A. Groen, “Real time vehicle tracking in image sequences,” in Proc. IEEE Int’l Conf. on Instrumentation and Measurement Technology, Budapest, Hungary, May 21-23, 2001, pp.2049-2054.
[40] Wetzel, D., H. Niemann, and S. Richter, “An image sequence analysis system for driver assistance,” in Proc. IEEE Conf. on Intelligent Information Systems, Brisbane, Australia, Nov.29 - Dec.2, 1994, pp.150–154.
[41] Willersinn, D., and W. Enkelmann, “Robust obstacle detection and tracking by motion analysis,” in Proc. IEEE Conf. on Intelligent Transportation System, Boston, MA, Nov.9-12, 1997, pp.717-722.
[42] Wu, J. and X. Zhang, “A PCA classifier and its application in vehicle detection,” in Proc. IEEE Int’l Conf. on Neural Networks, vol.1, Washington, DC, July 15-19, 2001, pp.600-604.
[43] Zehang, S., G. Bebis, and R. Miller, “On-road vehicle detection using Gabor filters and support vector machines,” in Proc. Int’l Conf. on Digital Signal Processing, Greece, July 1-3, 2002, pp.1019-1022.
[44] Zehang, S., R. Miller, G. Bebis, and D. DiMeo, “A real-time precrash vehicle detection system,” in Proc. IEEE Conf. on Applications of Computer Vision, Orlando, FL, Dec.3-4, 2002, pp.171-176.
[45] Zhihong, Z. and M. Songde, “An efficient vision system for multiple car tracking,” in Proc. IEEE Int’l Conf. on Pattern Recognition, Quebec, Canada Aug.11-15, 2002, pp.609-612.
[46] Zielke, T., M. Brauckmann, and W. Von Seelen, “Intensity and edge-based symmetry detection with an application to car-following,” Image Understanding, vol.58, no.2, pp.177-190, 1993.