跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴品菁
Pin-Ching Lai
論文名稱: 融合多模型排序之點擊預測模型
Learning to ensemble ranking model for sequential click prediction
指導教授: 陳弘軒
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: Top-N排序推薦系統點擊率預測機器學習深度學習
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今因為網路的蓬勃發展,網路與人們的生活密不可分,在網站的
    需求上,不管是購物網站或是音樂、影片網站,越來越多網站有個人化
    的服務及推薦。若能有效的推薦商品給使用者,不但能增加使用者對此
    網站的滿意度,還能讓這個網站的創造者獲得收益,造就雙贏的局面。
    本篇論文利用兩種不同大小的電商資料,對使用者下一個可能會點
    擊的商品做排序,推薦給使用者。為了將真正被點擊過的商品排在更前
    面的推薦序列中,我們使用了四種不同類型的模型來做排序。由於最近
    深度學習在各個領域表現卓越,推薦系統也開始使用深度學習架構來訓
    練,但我們發現,在不同的電商規模下,使用深度學習架構不一定會表
    現得比淺層的模型好。
    在發現了這個現象之後,我們使用這四個不同的模型排序過後的序
    列排名,來當作我們的訓練資料,並重新排序,最後我們得到了更符合使
    用者歷史點擊的排名,將真正被點擊過的商品的排名往前排,並獲得明
    顯的進步。不管在哪個資料集上,都表現的比四個基準模型還要好,並
    在實驗過程中發現了商品排名與商品出現次數的相關性。


    With the vigorous development of the Internet, it becomes inseparable
    from people’s lives. Various websites, such as online retailers and online
    music/video streaming websites, provide personalized recommendations to
    show the RIGHT products to users. These recommendations may increase
    users’ satisfaction with these services and create revenues for the service
    providers.
    This paper aims to predict a users’ next clicking item based on two
    e-commerce datasets. We compared four ranking models and claimed a
    model performs better if the model ranks the next clicking item at a former
    position among the four models. Despite recent researches showed excellent
    performance on deep learning-based ranking models, we found that this is
    not always the case. Notably, we may need to consider the size of the
    service providers as a reference to decide to apply a deep or a shallow
    learning model.
    Since different models may work under various scenarios, we developed
    an ensemble model that learns to rank the items based on the rankings
    returned by the four ranking models. Experimental results show that the
    new model outperforms the four baselines: on both datasets, the new model
    tends to put the next clicking item at a former position.

    摘要ix Abstract xi 目錄xiii 一、緒論1 1.1 研究動機.................................................................. 1 1.2 研究目標.................................................................. 2 1.3 研究貢獻.................................................................. 2 1.4 論文架構.................................................................. 3 二、背景及相關論文5 2.1 推薦系統Top-N 名候選商品排名.................................. 5 2.2 簡易模型與深度學習於推薦系統之應用........................... 7 2.3 深度學習模型是否確實提升推薦系統效果........................ 9 三、實驗發想與方法11 3.1 候選商品召回與商品向量訓練....................................... 11 3.2 多層神經網路(Multilayer perceptron) ........................ 12 3.3 阿里巴巴集團提出之深度學習模型................................. 13 3.3.1 Deep Interest Network (DIN) ......................... 14 3.3.2 Deep Interest Evolution Network (DIEN)........ 16 xiii 目錄 3.4 融合多模型排序結果................................................... 17 四、實驗設置與結果19 4.1 資料集介紹............................................................... 19 4.1.1 電商A 資料集................................................. 20 4.1.2 阿里巴巴集團旗下淘寶資料集.............................. 20 4.2 實驗資料配置與前處理................................................ 21 4.2.1 資料集介紹與前處理.......................................... 21 4.2.2 四個基礎模型實驗介紹....................................... 22 4.3 評量指標.................................................................. 24 4.4 實驗結果.................................................................. 25 4.4.1 基礎模型在對應資料集之排序結果........................ 26 4.4.2 參考基礎模型排序資訊之重新排序候選商品結果...... 30 五、結論與未來展望35 5.1 結論........................................................................ 35 5.2 未來展望.................................................................. 36 參考文獻37

    [1] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making much
    progress? A worrying analysis of recent neural recommendation approaches,” CoRR,
    vol. abs/1907.06902, 2019. arXiv: 1907.06902. [Online]. Available: http://arxiv.
    org/abs/1907.06902.
    [2] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach for
    cross domain user modeling in recommendation systems,” in Proceedings of the 24th
    International Conference on World Wide Web, ser. WWW ’15, Florence, Italy:
    International World Wide Web Conferences Steering Committee, 2015, pp. 278–
    288, isbn: 9781450334693. doi: 10.1145/2736277.2741667. [Online]. Available:
    https://doi.org/10.1145/2736277.2741667.
    [3] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization for
    document context-aware recommendation,” in Proceedings of the 10th ACM Conference
    on Recommender Systems, ser. RecSys ’16, Boston, Massachusetts, USA:
    Association for Computing Machinery, 2016, pp. 233–240, isbn: 9781450340359.
    doi: 10.1145/2959100.2959165. [Online]. Available: https://doi.org/10.1145/
    2959100.2959165.
    [4] J. Manotumruksa, C. Macdonald, and I. Ounis, “A contextual attention recurrent
    architecture for context-aware venue recommendation,” in The 41st International
    ACM SIGIR Conference on Research Development in Information Retrieval,
    ser. SIGIR ’18, Ann Arbor, MI, USA: Association for Computing Machinery, 2018,
    pp. 555–564, isbn: 9781450356572. doi: 10 . 1145 / 3209978 . 3210042. [Online].
    Available: https://doi.org/10.1145/3209978.3210042.
    [5] N. Sachdeva, K. Gupta, and V. Pudi, “Attentive neural architecture incorporating
    song features for music recommendation,” CoRR, vol. abs/1811.08203, 2018. arXiv:
    1811.08203. [Online]. Available: http://arxiv.org/abs/1811.08203.
    [6] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, and C. Xu, “Recurrent knowledge
    graph embedding for effective recommendation,” in Proceedings of the 12th
    ACM Conference on Recommender Systems, ser. RecSys ’18, Vancouver, British
    Columbia, Canada: Association for Computing Machinery, 2018, pp. 297–305, isbn:
    9781450359016. doi: 10.1145/3240323.3240361. [Online]. Available: https://
    doi.org/10.1145/3240323.3240361.
    37
    [7] Y. Tay, A. T. Luu, and S. C. Hui, “Translational recommender networks,” CoRR,
    vol. abs/1707.05176, 2017. arXiv: 1707.05176. [Online]. Available: http://arxiv.
    org/abs/1707.05176.
    [8] Y. Tay, L. A. Tuan, and S. C. Hui, “Multi-pointer co-attention networks for recommendation,”
    CoRR, vol. abs/1801.09251, 2018. arXiv: 1801 . 09251. [Online].
    Available: http://arxiv.org/abs/1801.09251.
    [9] T. X. Tuan and T. M. Phuong, “3d convolutional networks for session-based recommendation
    with content features,” in Proceedings of the Eleventh ACM Conference
    on Recommender Systems, ser. RecSys ’17, Como, Italy: Association for Computing
    Machinery, 2017, pp. 138–146, isbn: 9781450346528. doi: 10.1145/3109859.
    3109900. [Online]. Available: https://doi.org/10.1145/3109859.3109900.
    [10] F. Vasile, E. Smirnova, and A. Conneau, “Meta-prod2vec - product embeddings using
    side-information for recommendation,” CoRR, vol. abs/1607.07326, 2016. arXiv:
    1607.07326. [Online]. Available: http://arxiv.org/abs/1607.07326.
    [11] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,”
    in Proceedings of the 10th ACM Conference on Recommender
    Systems, New York, NY, USA, 2016.
    [12] S. Kabbur and G. Karypis, “Nlmf: Nonlinear matrix factorization methods for top-n
    recommender systems,” vol. 2015, Dec. 2014. doi: 10.1109/ICDMW.2014.108.
    [13] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms,”
    ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177, Jan. 2004, issn: 1046-8188.
    doi: 10.1145/963770.963776. [Online]. Available: https://doi.org/10.1145/
    963770.963776.
    [14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
    recommendation algorithms,” in Proceedings of the 10th International Conference
    on World Wide Web, ser. WWW ’01, Hong Kong, Hong Kong: Association for Computing
    Machinery, 2001, pp. 285–295, isbn: 1581133480. doi: 10.1145/371920.
    372071. [Online]. Available: https://doi.org/10.1145/371920.372071.
    [15] A. Tewari, J. Singh, and A. Barman, “Generating top-n items recommendation set
    using collaborative, content based filtering and rating variance,” Procedia Computer
    Science, vol. 132, pp. 1678–1684, Jan. 2018. doi: 10.1016/j.procs.2018.05.139.
    [16] C. Cooper, S. Lee, T. Radzik, and Y. Siantos, “Random walks in recommender
    systems: Exact computation and simulations,” Apr. 2014, pp. 811–816. doi: 10.
    1145/2567948.2579244.
    [17] P. Lops, M. de Gemmis, and G. Semeraro, “Content-based recommender systems:
    State of the art and trends,” in. Jan. 2011, pp. 73–105. doi: 10.1007/978-0-387-
    85820-3_3.
    38
    [18] B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, “Updatable, accurate, diverse,
    and scalable recommendations for interactive applications,” ACM Trans.
    Interact. Intell. Syst., vol. 7, no. 1, Dec. 2016, issn: 2160-6455. doi: 10 . 1145 /
    2955101. [Online]. Available: https://doi.org/10.1145/2955101.
    [19] Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou, “Behavior sequence transformer
    for e-commerce recommendation in alibaba,” CoRR, vol. abs/1905.06874, 2019.
    arXiv: 1905.06874. [Online]. Available: http://arxiv.org/abs/1905.06874.
    [20] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders
    for collaborative filtering.,” in WWW , P.-A. Champin, F. L. Gandon, M. Lalmas,
    and P. G. Ipeirotis, Eds., ACM, 2018, pp. 689–698. [Online]. Available: http :
    //dblp.uni-trier.de/db/conf/www/www2018.html#LiangKHJ18.
    [21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural collaborative
    filtering,” CoRR, vol. abs/1708.05031, 2017. arXiv: 1708.05031. [Online]. Available:
    http://arxiv.org/abs/1708.05031.
    [22] H. Wang, N. Wang, and D. Yeung, “Collaborative deep learning for recommender
    systems,” CoRR, vol. abs/1409.2944, 2014. arXiv: 1409.2944. [Online]. Available:
    http://arxiv.org/abs/1409.2944.
    [23] G. Zhou, C. Song, X. Zhu, X. Ma, Y. Yan, X. Dai, H. Zhu, J. Jin, H. Li, and K.
    Gai, “Deep interest network for click-through rate prediction,” 2017.
    [24] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai, “Deep interest
    evolution network for click-through rate prediction,” ArXiv, vol. abs/1809.03672,
    2019.
    [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
    and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.
    arXiv: 1706.03762. [Online]. Available: http://arxiv.org/abs/1706.03762.
    [26] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang, “Deep session
    interest network for click-through rate prediction,” CoRR, vol. abs/1905.06482,
    2019. arXiv: 1905 . 06482. [Online]. Available: http : / / arxiv . org / abs / 1905 .
    06482.
    [27] C. Cooper, S. Lee, T. Radzik, and Y. Siantos, “Random walks in recommender
    systems: Exact computation and simulations,” Apr. 2014, pp. 811–816. doi: 10.
    1145/2567948.2579244.
    [28] T. Ebesu, B. Shen, and Y. Fang, “Collaborative memory network for recommendation
    systems,” CoRR, vol. abs/1804.10862, 2018. arXiv: 1804.10862. [Online].
    Available: http://arxiv.org/abs/1804.10862.
    [29] B. Hu, C. Shi, W. Zhao, and P. Yu, “Leveraging meta-path based context for topn
    recommendation with a neural co-attention model,” Aug. 2018. doi: 10.1145/
    3219819.3219965.
    39
    [30] X. Li and J. She, “Collaborative variational autoencoder for recommender systems,”
    in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining, ser. KDD ’17, Halifax, NS, Canada: Association for
    Computing Machinery, 2017, pp. 305–314, isbn: 9781450348874. doi: 10.1145/
    3097983. 3098077. [Online]. Available: https: // doi. org/ 10. 1145/ 3097983.
    3098077.

    QR CODE
    :::