跳到主要內容

簡易檢索 / 詳目顯示

研究生: 易政男
Jenq-Nan Yih
論文名稱: 藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器
Enhanced detection signal of surface plasmon resonance and surface-enhanced Raman scattering biosensors by manipulating nanoplasmons
指導教授: 游漢輝
Hon-Fai Yau
陳顯禎
Shean-Jen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 188
中文關鍵詞: 表面電漿共振表面強化拉曼散射表面電漿子粒子電漿子衰減全反射生物感測器
外文關鍵詞: particle plasmons, surface plasmon resonance, surface-enhanced Raman scattering, surface plasmons, biosensors
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於蛋白質體學(proteomics)研究上,建立一多功能光學生物感測平台作為生物分子交互作用分析(biomolecular interaction analysis,BIA)為一重要研究工作。藉由表面電漿共振(surface plasmon resonance,SPR)感測技術來提供生物分子交互作用的動力學(kinetics)資訊,並搭配可提供生物分子的結構資訊之表面強化拉曼散射(surface-enhanced Raman scattering,SERS),可建立一更完善之生物分子辨識平台。利用此兩種感測機制,將可同時觀察生物分子之動態交互作用及其結構變化情形。
    SERS技術具有探測單一分子的能力,可與SPR技術一樣利用衰減全反射方式(attenuated total reflection,ATR)來激發表面電漿子(surface plasmons,SPs)來檢測感測器表面上生物分子。然而由於生物分子拉曼訊號相當微弱,須藉由粒子電漿子(particle plasmons,PPs)的操控,來加以放大。論文中,先介紹SPs與PPs之近場電磁強化作用,藉以作為SERS之物理機制之架構,並以A. Otto先生所提的化學強化機制為輔助,以期對電漿子強化拉曼訊號的機制有理論上之依據。在實驗部份,利用射頻混合濺鍍與化學方式奈米銀粒子的備製,來設計操控界面上奈米膜層之金屬粒子大小與分佈情形,並以自製的ATR-SPR光譜儀與微拉曼光譜儀來加以量測分析。最後以copper phthalocyanine(CuPc)及去氧核糖核酸(DNA )之SPR與SERS光譜之量測訊號加以分析討論,作為與本論文研究動機與目的之驗証。經由這些實驗結果,我們將可建構一藉由電漿子來強化量測訊號之SPR及SERS的生物分子辨識平台,除了提供生物分子交互作用的即時動態反應並且提供生物分子的結構改變之資訊。


    To establish a multi-purpose optical biosensing platform for biomolecular interaction analysis (BIA) is a key research work in proteomics. With helps of surface plasmon resonance (SPR) to analyze the kinetics of biomolecular interactions and of surface-enhanced Raman scattering (SERS) to detect the structural change of biomolecules, an advanced biomolecular recognition system with the both techniques can provide more information in a variety of BIA.
    SERS can be used to identify the molecular structure on sensor surface with the enhancement of electro-magnetic (EM) field through exciting surface plasmons (SPs) based on the attenuated total reflection (ATR) method. However, the Raman signal of biomolecule is still tiny, and hence it is needed to be magnified by other approaches such as manipulating particle plasmons (PPs). In this thesis, the near-field EM enhancement through SPs and PPs excitation is introduced first. The physical and chemical mechanisms of SERS are investigated to provide a scientific basis for understanding the plasmonic enhancement of Raman signal. Using both a radio-frequency co-sputtering method to fabricate Au@SiO2 composite film and a chemical synthesis approach to fabricate Ag nanoparticles, the size and distribution of embedded metal nanoparticles can be controlled on the sensor surface to enhance the near EM field. Finally, the SPR and Raman signal of copper phthalocyanine (CuPc) and deoxyribonucleic acid (DNA ) by using the homemade ATR-SPR and micro-Raman spectroscopes are tested and verified the motivation and intent of this thesis. According to these preliminary achievements, the biomolecular recognition platform utilizing the plasmonic enhanced signal of SPR and SERS, not only provides the real time kinetic information of biomolecular interactions, but also offers the structural information of biomolecules.

    摘 要 I Abstract III 謝 誌 V 目 錄 VII 圖 目 XI 表 目 XXI 符 號 XXIII 第一章 緒 論 1 1-1 前言 1 1-2 研究動機及目的 3 1-3 文獻回顧 4 1-4 論文架構 5 第二章 電漿子激發 7 2-1 表面電漿子 7 2-1-1 激發表面電漿子之近場電磁強化 7 2-1-2 表面電漿子激發之吸收能帶 16 2-1-3 粗糙度對表面電漿波之影響 17 2-2 粒子電漿子 19 2-2-1 粒子電漿子之吸收光譜 19 2-2-2 粒子電漿子之近場電磁強化 27 2-2-3 混合膜中之粒子電漿子–等效膜層近似分析 33 第三章 奈米粒子強化之表面電漿共振感測分析 35 3-1 金屬膜、混合膜及介電膜製備 35 3-2 角度探測之衰減全反射式表面電漿共振光譜儀 39 3-2-1 系統設計 39 3-2-2 系統測試 42 3-3 奈米粒子強化靈敏度之SPR實驗結果及分析 45 3-4 金@二氧化矽混合膜對感測靈敏度之探討 49 3-5 超解析近場光碟片中受混合膜層修飾之表面電漿子效應 61 3-5-1 聚焦激發表面電漿子之模型 61 3-5-2 聚焦式激發表面電漿子 65 第四章 表面強化拉曼散射 79 4-1 拉曼散射 79 4-2 拉曼散射光譜術與紅外吸收光譜術之比較 85 4-3 表面強化拉曼散射 89 4-3-1 物理機制 89 4-3-2 化學機制(第一層效應) 93 第五章 DNA結構分析 97 5-1 樣品製備 97 5-1-1 銀粒子製備及其固定法 97 5-1-2 CuPc膜及DNA分子 100 5-2 聚焦及衰減全反射式激發–微拉曼光譜儀 103 5-2-1 系統設計 103 5-2-2 譜線測試 106 5-3 CuPc膜之拉曼光譜 111 5-3-1 CuPc膜之厚度量測 111 5-3-2 基板、金屬膜之拉曼光譜 115 5-3-3 CuPc膜之拉曼光譜 119 5-4 DNA二次結構之表面強化拉曼散射光譜 125 5-4-1 DNA雜交分析 125 5-4-2 DNA之表面強化拉曼散射光譜 127 第六章 結 論 137 參考文獻 139 簡歷Curriculum Vitae 147 英 文 索 引 151

    1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface-plasmon resonance sensors - review,” Sensor. Actuat. B Chem. 54, 3-15 (1999)
    2. K. Cottier, M. Wiki, G. Voirin, H. Gao, R.E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sensor. Actuat. B Chem.91, 241-251 (2003)
    3. M. Wiki and R. E. Kunz, “Wavelength-interrogated optical sensor for biochemical applications ,” Opt. Lett. 25, 463-465 (2000)
    4. N. M. Rao, A. L. Plant, V. Silin, S. Wight, S. W. Hui, “Characterization of biomimetic surfaces formed from cell membranes,” Biophys. J. 73, 3066-3077 (1997)
    5. C. Striebel, A. Brecht, G. Gauglitz, “Characterization of biomembranes by spectral ellipsometry, surface-plasmon resonance and interferometry with regard to biosensor application,” Biosens. Bioelectron. 9, 139-146 (1994)
    6. M. Watanabe, K. Kajikawa, “An optical fiber biosensor based on anormalous reflection of gold,” Sensor. Actuat. B Chem.89, 126-130 (2003)
    7. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.
    8. K. A. Peterlinz, R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130, 260-266 (1996)
    9. K. A. Peterlinz, R. Georgiadis, “In-situ kinetics of self-assembly by surface-plasmon resonance spectroscopy,” Langmuir 12, 4731-4740 (1996)
    10. D. W. Visscher, D. S. Gingrich, C. Leonarmin, P. Tabaczka, J. D. Crissman, “Histopathologic and flow-cytometric analysis of neoplastic and benign background tissue in breast carcinoma resections,” Anal. Cell Pathol. 17, 167-175 (1998)
    11. F. C. Chien et al., Opt. Lett. 2006 accepted
    12. P. I. Nikitin, A. A.Beloglazov, M. V. Valeiko, J. A. Creighton, A. M. Smith, N. A. J. M. Sommerdijk, J. D. Wright, “Silicon-based surface plasmon resonance chemical sensors,” Sensor. Actuat. B Chem. 38, 53-57 (1997)
    13. S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B 27, 1401-1404 (1983)
    14. S. Hayashi, T. Kitagawa, Y. Sekiguchi, T. Kume, “Enhanced-Raman scattering from organic thin films in an attenuated total reflection geometry mediated by half-leaky guided modes,” Thin Solid Film 342, 249-256 (1999)
    15. M. Futamata, E. Keim, A. Bruckbauer, D. Schumacher, A. Otto, “Enhanced Raman scattering from copper phthalocyanine on Pt by use of a Weierstrass prism,” Appl. Surf. Sci. 100-101, 60-63 (1996)
    16. D. Zerulla, G. Isfort, M. Kolbach, A. Otto, K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy onelectrochemically structured sensor chips,” Electrochim. Acta 48, 2943-2947 (2003)
    17. M. Futamata, “Surface plasmon polariton enhanced Raman scattering of thickness and dielectric properties of constituents,” Langmuir 11, 3894-3901 (1995)
    18. M. Futamata, “Surface-plasmon-polariton-enhanced Raman scattering from self-assembled monolayers of p-Nitrothiophenol and p-Aminothiophenol on silver,” J. Phys. Chem. 99, 11901-11908 (1995)
    19. M. Futamata, “Application of attenuated total reflection surface-plasmon-polariton Raman spectroscopy to gold and copper,” Appl. Opt. 36, 364-375 (1997)
    20. M. Futamata, “Highly-sensitive Raman spectroscopy to characterize adsorbates on the electrode,” Surf. Sci. 386, 89-92 (1997)
    21. S. Takahashi, M. Futamata, and I. Kojima, “Spectroscopy with scanning near-field optical microscopy using photon tunnelling mode,” J. Microsc. Oxford 194, 519-522 (1999)
    22. M. Futamata and A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425-430 (2001)
    23. M. Futamata and A. Bruckbauer, “Attenuated total reflection-scanning near-field Raman spectroscopy,” Jpn. J. Appl. Phys. 40, 4423-4429 (2001)
    24. T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim and M. I. Simon, “SERS method and instrumentation for genomics and biomedical analysis,” J. Raman Spectrosc. 30, 785-793 (1999)
    25. J.M. Bello, V. A. Narayanan, D. L. Stokes, and T. Vo-Dinh, “Fiber-optic remote sensor for in situ surface-enhanced Raman scattering analysis,” Anal. Chem. 62, 2437-2441 (1990)
    26. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sensor. Actuat. B Chem. 69, 28-36 (2000)
    27. M. Futamata and D. Diesing, “Adsorbed state of pyridine, uracil and water on gold electrode surfaces,” Vib. Spectrosc. 19, 187-192 (1999)
    28. M. Futamata, “In-situ ATR-IR study of water on gold electrode surface,” Surf. Sci. 427-428, 179-183 (1999)
    29. M. Futamata, “Coadsorbed state of uracil, water and sulfate species on the gold electrode surface,” Chem. Phys. Lett. 317, 304-309 (2000)
    30. M. Futamata, “Unique adsorbed state of 4,4’-BiPy and -BiPyH22+ on Au(111) electrode,” Chem. Phys. Lett. 332, 421-427 (2000)
    31. T. Tanaka, S. Nagao, and H. Ogawa, “Attenuated total reflection Fourier transform infrared (ATR-FTIR),” Anal. Sci. 17, i1081-i1084 (2001)
    32. M. Futamata, “Coadsorption of anions and water molecule during underpotential deposition of Cu and Pb on the Au (111) electrode surface,” Chem. Phys. Lett. 333, 337-343 (2001)
    33. M. Futamata, “Characterization of the first layer and second layer adsorbates on Au electrodes using ATR-IR spectroscopy,” J. Electroanal. Chem. 550-551, 93-103 (2003)
    34. K. L. A. Chan and S. G. Kazarian, “New Opportunities in micro- and macro-ATR infrared spectroscopic imaging spatial resolution and sampling versatility,” Appl. Spectrosc. 57, 381-389 (2003)
    35. D. Roy and J. Fendler, “Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials,” Adv. Mater. 16, 479-508 (2004)
    36. D. Kambhampati, P. E. Nielsen, W. Knoll, “Investigating the kinetics of DNADNA and PNADNA interactions using SPR-enhanced fluorescence spectroscopy,” Biosens. Bioelectron. 16, 1109-1118 (2001)
    37. T. Liebermann, W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface. A 171, 115-130 (2000)
    38. T. Neumann, M-L Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater 12, 575-586 (2002)
    39. K. Ohta and H. Ishida, "Matrix formalism for calculation of electric field intensity of light in stratified multilayered films," Appl. Opt. 29, 1952-1959 (1990)
    40. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation”, Opt. Lett. 6, 3, 122-124 (1981)
    41. E. D. Palik, Handbook of optical constants of solids, Orlando, New York: Academic Press, 1985.
    42. 同[7], ch. 2
    43. 同[7], ch. 2
    44. 同[7], ch. 2
    45. 同[7], ch. 2
    46. S. Gasiorowicz, Quantum Physics, John Wiley & Sons, 1995. ch. 2
    47. 同[7], ch. 3
    48. 朱志昇,“光波導耦合表面電漿子之電光調變器”,國立中央大學機械工程研究所,九十二學年碩士論文。
    49. S. Hayashi, “SERS on random rough silver surfaces: Evidence of surface plasmon excitation and the enhancement factor for copper phthalocyanine,” Surf. Sci 158, 229-237 (1985)
    50. S. Hayashi, T. Kume, T. Anamo, and K. Yamamoto, ‘A new method of surface plasmon excitation mediated by metallic nanoparticles,” Jpn. J. Appl. Phys. 35, L331-L334 (1996)
    51. T. Kume, S. Hayashi, and K. Yamamoto, ‘A new method of surface plasmon excitation using metallic fine particles,’ Mat. Sci. Eng. A-Struct. 217/218, 171-175 (1996)
    52. 同[7], ch. 2
    53. U. Kreibig, M. Vollmer, Optical properties of metal clusters, Berlin: Springer-Verlag, 1994. ch. 2.2
    54. 同[53] , ch. 2.2
    55. A.D. Boardman., Electromagnetic surface modes, New York: Wiley, 1982. ch. 9.
    56. H. Frohlich, Theory of dielectrics : dielectric constant and dielectric loss, Oxford: Clarendon Press, 1958.
    57. J. A. Stratton, Electromagnetic theory, New York: McGraw-Hill, 1941. ch. 9.25
    58. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, New York: Wiley, 1983. ch. 4.
    59. 同[55], ch. 9
    60. M. Futamata, Y. Maruyama, M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003)
    61. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994)
    62. Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, Boston: Artech House, 1990.
    63. Allen Taflove, Computational electrodynamics: the finite-difference time-domain method, Boston: Artech House, 1995.
    64. D. Mackowski and M. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996)
    65. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Letters 3, 1087-1090 (2003).
    66. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343-2350 (2001)
    67. A. Pinchuk, A. Hilger, G. Von Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15, 1890-1896 (2004)
    68. 同[7], ch. 2.10
    69. H. Xu, J. Aizpurua, M. Ka¨ll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000)
    70. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. London A. 203, 358-420 (1904); A. 205, 237-288 (1906)
    71. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leipzig) 24, 636-679 (1935)
    72. E. B. Priesley, B. Abeles, and R. W. Cohen, “Surface plasmons in granular Ag-SiO2 films,” Phys. Rev. B 12, 2121-2124 (1975)
    73. R. K. Roy, S. K. Mandal, D. Bhattacharyya, and A. K. Pal, “An ellipsometric investigation of Ag/SiO2 nanocomposite films,” Eur. Phys. J. B 34, 25-31 (2003)
    74. S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674-695 (1978)
    75. T. Kume, T. Amano, S. Hayashi, K. Yamamoto, “Attenuated total reflection spectroscopy of Ag-SiO2 composite films,” Thin Solid Films 264, 115-119 (1995)
    76. T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface,” Solid State Commun. 93, 171-175 (1995)
    77. 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,1999。
    78. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465-1471 (2004)
    79. S. K.Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805-814 (2003)
    80. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000)
    81. J.-N. Yih, W.-C. Hsu, S.-Y. Tsai, and S.-J. Chen, "Enhanced the readout signal of super-resolution near-field structure discs by controlling size and distribution of metal nanoclusters," Appl. Opt. 44, 3001-3005 (2005)
    82. S.-J Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of SPR biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29, 1390-1392 (2004)
    83. 同[7], ch. 2
    84. 簡汎清,“超高解析度表面電漿共振生物感測器之研製”,中央大學光電所,九十二學年碩士論文,第二章,第28頁。
    85. 同[7], ch. 3.4
    86. 同[7], ch. 4.3
    87. D. L. Hornauer, “Light scattering experiments on silver films of different roughness using surface plasmon excitation,” Opt. Commun. 16, 76-79 (1976)
    88. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381-1386 (1998)
    89. S. M. Mansfield and G. S.Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990)
    90. S. Mansfield, W. Studenmund, G. Kino, and K. Osato, “High-numerical-aperture lens system for an optical storage head,” Opt. Lett. 18, 305-307 (1993)
    91. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, ‘Near-field optical data storage using a solid immersion lens,’ Appl. Phys. Lett. 65, 388-390 (1994)
    92. B. D. Terris, H. J. Mamin, and D. Rugar, ‘Near-field optical data storage’ Appl. Phys. Lett. 68, 141-143 (1996)
    93. C. V. Raman and K. S. Krishnan, “The production of new radiations by light scattering,” P. Roy. Soc. Lond. A-Mat. 122, 23-35 (1929)
    94. 同[46], ch. 1
    95. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
    96. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari and M. S Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002)
    97. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004)
    98. Derek A. Long, The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, New York: John Wiley & Sons, 2002.
    99. A. Otto, I. Mrozek, H. Grabhorn and W. Akemann, “Surface-enhanced Raman scattering,” J. Phy.: Condens. Matter 4, 1143-1212(1992)
    100. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles,” Appl. Opt. 19, 3373-3388 (1980)
    101. D.-S. Wang and M. Kerker,, “Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids,” Phys. Rev. B 24, 1777-1790 (1981)
    102. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982)
    103. P. Hildebrandt and M. Stockburger, “Enhanced resonance Raman spectroscopy of rhodamine 6G absorbed on colloidal silver,” J. Phys. Chem. 88, 5935-5944 (1984)
    104. Coherent, Verdi –DPSS CW Pump Lasers, http://www.cohr.com
    105. F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397, 429-434 (2004)
    106. P. C. Andersen, M. L. Jacobson, and K. L. Rowlen, “Flashy silver nanoparticles,” J. Phys. Chem. B 108, 2148-2153 (2004)
    107. P. C. Andersen, Generation and optical properties of silver surface- enhanced Raman scattering substrates, Ph. D. Dissertation, Department of Chemistry and Biochemistry, University of Colorado, U.S., 2003.
    108. L. Movileanu, J. M. Benevides and G. J. Thomas, “Temperature dependence of the Raman spectrum of DNA. Part I – Raman signatures of premelting and melting transitions of poly(dA-dT).poly(dA-dT)” J. Raman Spectrosc. 30, 637-649 (1999)

    QR CODE
    :::