跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳威宏
wei-hung chen
論文名稱: n型氮化鎵金氧半場效電晶體
Investigation of Characteristics and Process of n-type GaN-based MOSFET Devices
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 70
中文關鍵詞: 氮化鎵金氧半場效電晶體光電化學氧化鎵
外文關鍵詞: PEC, MOSFET, GaN, Ga2O3
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    由於氮化鎵具備半導體材料當中鍵結最強的離子性,難以用傳統的方法進行蝕刻及氧化之製程,所以一般金氧半場效電晶體(MOSFETs)的閘極氧化物多為利用蒸鍍或濺鍍的方式製作,然而氧化物易受到蒸鍍或濺鍍的製程條件影響導致品質不佳,因此本篇論文主要利用新提出的光增強濕式的氧化方式,稱作光電化學的氧化方法(Photoelectrochemical oxidation method,PEC)直接對n型氮化鎵材料表面進行氧化,可有效改善用蒸鍍或濺鍍方式所製作之氧化層品質不佳的問題。
    研究中發現藉由調整溶液PH值、照光強弱等方式可控制氧化鎵成長的速率,而由光激發光譜中顯示氧化鎵具有優秀的表面保護作用。經由對氧化鎵進行熱處理,其厚度會變得較薄,結構也變得較為緻密,並且擁有較佳之表面平整度,而當處理溫度愈高時變化愈明顯,接著進行金氧半場效電晶體元件製作並量測其特性,由量測漏電流及崩潰電場的結果顯示所製作為一高品質之氧化層,於元件的直流特性量測上,當施加於閘極的電壓為-3V時,量測到的輸出電流為零,此時整個場效電晶體已達到截止狀態(cut-off),而在互導值量測上,當閘源極的電壓為0.2V時,可獲得最大的互導值2.25mS/mm。


    論文摘要 I 目錄 II 表目 IV 圖目 V 第一章 緒論 1 1-1背景及研究動機 1 1-2研究目的 3 第二章 氮化鎵氧化原理及特性分析 6 2-1前言 6 2-2氮化鎵氧化之原理 9 2-3實驗架構 10 2-4氧化鎵特性分析 12 2-4-1氧化鎵成長速率 12 2-4-2氧化層組成與表面分析 13 2-4-3氧化鎵經熱處理後之特性 15 第三章 氮化鎵金氧半場效電晶體製作及特性分析 18 3-1前言 18 3-2金氧半場效電晶體元件基本原理 19 3-2-1 金氧半二極體原理 20 3-2-2 金氧半場效電晶體原理 21 3-3氮化鎵金氧半場效電晶體元件製作 23 3-3-1 n型氮化鎵歐姆接觸 23 3-3-2元件製作 25 3-4量測與實驗結果 30 3-4-1歐姆接觸長期穩定性量測 30 3-4-2二氧化矽薄膜特性量測 30 3-4-3元件電壓-電流特性量測 31 第四章 結論與未來展望 35 參考文獻 37

    參考文獻
    1. C. Gaquiere, S. Trassert, B. Boudart, and Y. Crosnier, “High-power GaN MESFET on sapphire substrate”, IEEE Microwave and Guided Wave Letters, Vol. 10, p.19 (2000)
    2. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes”, Jpn. J. Appl. Phys., Vol.30, L1998 (1991)
    3. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light- emitting diodes”, Appl. Phys. Lett., Vol.64, p.1687 (1994)
    4. J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors”, Appl. Phys. Lett., Vol.72, p.542 (1998)
    5. M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal Semiconductor Field Effect Transistor Based on Single Crystal GaN”, Appl. Phys. Lett., Vol.62, p.1786 (1993).
    6. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” pp.481~484
    7. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” p.195~p.200
    8. S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology ” p.342
    9. H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and Steven P. DenBaars, “Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN”, Appl. Phys. Lett., Vol.68, p.1850, (1996)
    10. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN Insulator– Semiconductor Interfaces with Low Interface State Density”, Appl. Phys. Lett., Vol.73, p.809 (1998)
    11. B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, “High-Quality Oxide/Nitride/Oxide Gate Insulator for GaN MIS Structures”, IEEE Transactions on Electron Devices, Vol.48, p.458(2001).
    12. L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, “High-Dielectric-Constant Ta2O5/n-GaN Metal-Oxide- Semiconductor Structure”, Appl. Phys. Lett., Vol.77, p.3788(2000).
    13. T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J. Redwing, “Capacitance–Voltage Characterization of AlN/GaN Metal–Insulator–Semiconductor Structures Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition”, J. Appl. Phys., Vol.88, p.1983 (2000).
    14. D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, and D. H. Shin and C. H. Lee and K. S. Chung, “GaN Metal–Oxide–Semiconductor Structures Using Ga-oxide Dielectrics Formed by Photoelectrochemical Oxidation”, Appl. Phys. Lett., Vol.80, p.446 (2002)
    15. T. S. Lay, W. D. Liu, M. Hong, J. Kwo and J. P. Mannaerts, “C-V and G-V Characterization of Ga2O3(Gd2O3)/GaN Capacitor with Low Interface State Density”, Electronics Letters, Vol.37, p.595 (2001)
    16. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys. Vol.86, No.1 (Applied Physics Reviews, GaN: Processing, defects, and devices)
    17. R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Consantine, C. Barratt, R. F. karlicek, Jr., C. Tran, and M.churman, “Inductively coupled plasma etching of GaN”, Appl. Phys. Lett. Vol.69, p.1119 (1996)
    18. T. Kozawa, T. Kachi, T. Ohwaki, Y. Taga, N. Koide, and M. Koike, “Dislocation Etch Pits in GaN Epitaxial Layers Grown on Sapphire Substrates”, J. Electrochem. Soc. (USA) Vol.143, L17 (1996)
    19. J. I. Pankove, “Electrolytic etching of GaN”, J. Electrochem. Soc: Vol.119, p.1118 (1972)
    20. M. Okubo, “Effects of Dissolved Oxygen on Anodic Etching of n-Type GaN Films Using a Sodium Hydroxide Electrolyte”, Jpn. J. Appl. Phys. Vol.36, L955 (1997)
    21. C. Youtsey and I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., Vol.71 p.2151 (1997)
    22. L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride”, Appl. Phys. Lett., Vol.72, p.939 (1998)
    23. T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul, V. Schwegler, C. Kirchner, and M. Kamp, M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys. Lett., Vol. 76, p.3923 (2000)
    24. E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett. Vol. 68, p.1678 (1996)
    25. J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, and A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett., Vol. 77, p.1227, (2000)
    26. L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen , “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett., Vol.76, p.511 (2000)
    27. Dieter K. Schroder, “Semiconductor Material and Device Characterization” p.339
    28. C. Vanleugenhaghe, N. de Zoubov, and M. Pourbaix, Atlas of Electrochemucal Equilibria in Aqueous Solutions(National Association of Corrosion Engineers, Houston, 1974)p.428
    29. 陳宏維,”N型氮化鎵MOS元件之製作與研究”,國立中央大學光電科學研究所碩士論文,2002。
    30. 廖清賢,”氮化鎵之光電化學反應與應用”,國立台灣大學光電工程學研究所碩士論文,2000。
    31. E. H. NICOLLIAN, J. R. BREWS, ”MOS (Metal Oxide Semiconductor) Physics and Technology, p.738~p.742
    32. S. D. Wolter, B. P. Luther, D. L. Waltemyer, C. Önneby, and S. E. Mohney, R. J. Molnar, “X-ray photoelectron spectroscopy and x-ray diffraction study of the thermal oxide on gallium nitride”, Appl. Phys. Lett., Vol.70, p.2156, (1997)
    33. F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors”, Appl. Phys. Lett., Vol.73, p.3893 (1998)
    34. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoc, “Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett., Vol.64, p.1003 (1994)
    35. Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures”, Appl. Phys. Lett., Vol.71, p.1658 (1997)
    36. C. T. Lee and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., Vol.76, p.2364 (2000)
    37. J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee and C. C. Chuo, “Gd2O3/GaN metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett., Vol.77, p.3230 (2000)

    QR CODE
    :::