跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳震瑜
Chen-Yu Chen
論文名稱: 網路聲量分析與意見目標情感分析於歌曲點播量預測之應用
Prediction of Music Playback Based on Singer Popularity and Aspect-based Sentiment Analysis from Social Network
指導教授: 張嘉惠
Chia-Hui Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 53
中文關鍵詞: 深度學習情感分析熱門歌曲預測意見目標情感分析
外文關鍵詞: Deep Learning, Sentiment Analysis, Hit Song Perdition, Aspect-based sentiment analysis
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社群媒體網站提供了豐富且多樣性的資訊,使輿情分析與網路聲量偵測,變成調查與理解市場的方法之一。而上述的方法能夠為網路服務平台提供平台資訊以外的訊息,有助於解決客群侷限於特定平台的問題,使平台能夠獲得較為全面性的數據來進行分析與決策。然而,多半的社群媒體都是以文字敘述為主,該如何將輿情分析的結果與文字訊息有效的轉化成數值資料,利於後續數據分析中是本研究關注的主題。

    本研究主軸設定在「歌手網路聲量」以及「意見目標的情緒分類」兩項,並應用於「熱門歌曲預測」。在「歌手網路聲量」的項目中,我們鎖定在華語區的歌手及歌曲,針對來自於「批踢踢 PTT 實業坊」的社群媒體,來關注歌手、歌曲的網路聲量。由於一個句子談論內容可能會針對不同的意見目標(Target)來進行評論,造成模型情感標記的困難。
    因此本研究進一步採用「意見目標的情感分類(Aspect-based Sentiment Classification, ASC)」,來對與歌手、歌曲相關的評論進行意見目標上情感預測,在ASC的任務中使用運用不同的嵌入層方法,如pre-train 好的 Word Embedding、Character embedding,以及 BERT[5] 來將字詞轉換成向量,並在這些不同嵌入層方法上,運用 Huang 等人[11]的意見目標情感分類方法,以及運用Parikh 等人[17]的自然語言推論(Natural Language Inference)方法,來對意見目標的進行情緒分析。接著運用訓練好的Aspect情感模型來對社群媒體評論進行輿情分析,並將分析結果加入平台的點播量資訊中,來預測歌曲的未來播放量。

    並在「熱門歌曲預測」的任務中運用類神經網路來設計預測模型,解決高維度的特徵資料;我們希望透過類神經網路來學習特徵之間的關係,藉此省去以往需要仰賴人工經驗、繁瑣的統計方法來進行特徵處理。實驗結果顯示,加入「歌手網路聲量」以及「意見目標的情緒分析」有助於後續歌曲點播量提升的預測。


    Social media networks provide rich and diverse information, making opinion analysis and network volume analysis have become one of the methods to investigate and understand the market. The above method can provide information other than platform. It can helps to solve the problem that the customer group is restricted to a specific platform, Enable the platform to obtain more comprehensive data for analysis and decision-making. However, most social media are based on text narratives. How to effectively convert the results of public opinion analysis and text messages into numerical data, which will facilitate subsequent data analysis, is the subject of our research.

    Our main research is to apply "singer & song network mentions" and "Aspect-based sentiment analysis" to "Hit Song prediction". In "singer & song network mentions" tasks, we focus on Chinese district singers and songs, and follow the social media "PTT" to pay attention to follow the network mentions of singers and songs. Since the content of a sentence may be commented on different targets, it is difficult to label the emotions of the model.

    Therefore, In our Research, Further use the "Aspect-based Sentiment Classification" to predict sentiment polarity on discussions related to singers and songs. We use different embedding layer methods in ASC tasks, such as pre-trained Word Embedding, Character embedding, and BERT[5] to transfer words and character into vectors, and on these embedding layer methods, Huang et al.[11] Aspect-based Sentiment Classification method and Parikh et al.[17] natural language inference method are used for the Aspect-based Sentiment Classification tasks. Then use the pre-train Aspect sentiment model to analyze the social media comments, and add the analysis results to the platform’s on-demand information to predict the future play volume of songs.

    In Hit Song prediction task, use neural network to design prediction model, Solve the high dimensional features data and learning the relationship between features through neural networks, This eliminates the need to rely on artificial experience and cumbersome statistical methods for feature processing in the past. The experimental results show that the addition of "network mention information" and "sentiment analysis" can improve hit song prediction performance.

    摘要 i Abstract ii 目錄 iv 圖目錄 v 表目錄 vi 一、簡介 1 二、意見目標情感分類 4 2.1 相關研究 4 2.2 Aspect-Based情感分類模型架構- 嵌入層方法 11 2.2.1 Non-BERT模型嵌入層方法 11 2.2.2 BERT 模型嵌入層方法 13 2.3 Decom-AOA 模型 15 2.4 資料集準備與分析 17 2.5 實驗與模型效能評估 18 三、熱門歌曲預測 24 3.1 相關研究 24 3.2 熱門歌曲預測問題定義 25 3.3 Auto Multi-Layer Perceptron (AutoMLP) 25 3.4 資料分析與資料集 27 3.4.1 網路提及聲量資料準備 27 3.4.2 網路聲量特徵準備 28 3.5 模型效能評估 29 3.5.1 評估方法 29 3.5.2 原始數據效能 30 3.5.3 網路聲量之效能影響 31 四、結論與未來展望 39 參考文獻 40

    [1] Thomas M. Breuel and Faisal Shafait. Automlp: simple, effective, fully automated
    learning rate and size adjustment. In The learning workshop, Utah,
    2010.
    [2] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memorynetworks
    for machine reading. Proceedings of the 2016 Conference on Empirical
    Methods in Natural Language Processing, 2016.
    [3] Chien-Lung Chou and Chia-Hui Chang. Named entity extraction via automatic
    labeling and tri-training: Comparison of selection methods. In Azizah
    Jaafar, Nazlena Mohamad Ali, Shahrul Azman Mohd. Noah, Alan F. Smeaton,
    Peter Bruza, Zainab Abu Bakar, Nursuriati Jamil, and Tengku Mohd Tengku
    Sembok, editors, Information Retrieval Technology - 10th Asia Information Retrieval
    Societies Conference, AIRS 2014, Kuching, Malaysia, December 3-5,
    2014. Proceedings, volume 8870 of Lecture Notes in Computer Science, pages
    244–255. Springer, 2014.
    [4] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu.
    Attention-over-attention neural networks for reading comprehension. In Proceedings
    of the 55th Annual Meeting of the Association for Computational Linguistics
    (Volume 1: Long Papers), pages 593–602, Vancouver, Canada, July
    2017. Association for Computational Linguistics.
    [5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
    Pre-training of deep bidirectional transformers for language understanding. In
    Proceedings of the 2019 Conference of the North American Chapter of the Association
    for Computational Linguistics: Human Language Technologies, Volume
    1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
    2019. Association for Computational Linguistics.
    [6] Jianyu Fan and Michael A. Casey. Study of chinese and uk hit songs prediction.
    2013.
    [7] Jerome H. Friedman. Greedy function approximation: A gradient boosting
    machine. Annals of Statistics, 29:1189–1232, 2000.
    [8] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An interactive
    multi-task learning network for end-to-end aspect-based sentiment analysis. In
    Proceedings of the 57th Annual Meeting of the Association for Computational
    Linguistics, pages 504–515, Florence, Italy, July 2019. Association for Computational
    Linguistics.
    [9] Dorien Herremans, David Martens, and Kenneth Srensen. Dance hit song prediction.
    Journal of New Music Research, 43(3):291302, Jul 2014.
    [10] Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. Neural
    Computation, 9(8):1735–1780, 1997.
    [11] Binxuan Huang, Yanglan Ou, and Kathleen M. Carley. Aspect level sentiment
    classification with attention-over-attention neural networks. volume
    abs/1804.06536, 2018.
    [12] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings
    of the 2014 Conference on Empirical Methods in Natural Language
    Processing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association
    for Computational Linguistics.
    [13] Lun-Wei Ku and Hsin-Hsi Chen. Mining opinions from the web: Beyond relevance
    retrieval. Journal of the American Society for Information Science and
    Technology, 58(12):1838–1850, 2007.
    [14] Peng-Hsuan Li, Tsu-Jui Fu, and Wei-Yun Ma. Why attention? analyze bilstm
    deficiency and its remedies in the case of ner, 2019.
    [15] Xin Li, Lidong Bing,Wai Lam, and Bei Shi. Transformation networks for targetoriented
    sentiment classification. In Proceedings of the 56th Annual Meeting
    of the Association for Computational Linguistics (Volume 1: Long Papers),
    pages 946–956, Melbourne, Australia, July 2018. Association for Computational
    Linguistics.
    [16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
    of word representations in vector space, 2013.
    [17] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable
    attention model for natural language inference. In Proceedings of the
    2016 Conference on Empirical Methods in Natural Language Processing, pages
    2249–2255, Austin, Texas, November 2016. Association for Computational Linguistics.
    [18] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi.
    Bidirectional attention flow for machine comprehension, 2016.
    [19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
    Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
    In I. Guyon, U. V. Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan,
    and R. Garnett, editors, Advances in Neural Information Processing Systems
    30, pages 5998–6008. Curran Associates, Inc., 2017.
    [20] Hu Xu, Bing Liu, Lei Shu, and Philip Yu. BERT post-training for review reading
    comprehension and aspect-based sentiment analysis. In Proceedings of the
    2019 Conference of the North American Chapter of the Association for Computational
    Linguistics: Human Language Technologies, Volume 1 (Long and Short
    Papers), pages 2324–2335, Minneapolis, Minnesota, June 2019. Association for
    Computational Linguistics.
    [21] Wei Xue and Tao Li. Aspect based sentiment analysis with gated convolutional
    networks. In Proceedings of the 56th Annual Meeting of the Association for
    Computational Linguistics (Volume 1: Long Papers), pages 2514–2523, Melbourne,
    Australia, July 2018. Association for Computational Linguistics.
    [22] Li-Chia Yang, Szu-Yu Chou, Jen-Yu Liu, Yi-Hsuan Yang, and Yi-An Chen.
    Revisiting the problem of audio-based hit song prediction using convolutional
    neural networks. 2017 IEEE International Conference on Acoustics, Speech and
    Signal Processing (ICASSP), Mar 2017.
    [23] Da Yin, Xiao Liu, and Xiaojun Wan. Interactive multi-grained joint model for
    targeted sentiment analysis. In CIKM ’19, 2019.
    [24] Lang-Chi Yu, Yi-Hsuan Yang, Yun-Ning Hung, and Yi-An Chen. Hit song
    prediction for pop music by siamese cnn with ranking loss, 2017.

    QR CODE
    :::