| 研究生: |
王耀龍 Yao-Lung Wang |
|---|---|
| 論文名稱: |
透鏡像差的量測與MTF的驗證 |
| 指導教授: |
孫慶成
Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 像差 、調制傳遞函數 、波前擬合 |
| 外文關鍵詞: | aberration, MTF, Zernike polynomial |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用雙空間頻率光柵之剪影干涉儀以及光折變晶體剪影干涉儀獲得待測透鏡在兩垂直方向上不同的橫向剪影干涉圖形,再利用Zernike 多項式擬合求出像差係數並推算出待測波前的像差。我們進一步推算該透鏡的調制傳遞函數(MTF);最後我們並利用正弦光柵片來量測MTF,並與上述計算比較。
在論文中,我們在全像片上記錄了在正交方面上各兩組光柵,該兩組光柵的空間頻率有些微的差距,可使兩繞射光在空間上產生橫向偏離,因此可利用該全像片產生正交方向的兩組橫向剪影干涉圖;我們也利用了光折變晶體當作儲存的資料庫,記錄了兩組光柵,也利用其繞射光產生橫向位移,形成橫向剪影干涉圖再以數位化技術分析干涉圖形,以獲得條紋中心位置與條紋階數(Fringe order)以供Zernike多項式擬合。
由於橫向剪影干涉圖形之分析所得的結果,只是待測波前的斜率,我們選擇以平均演算法來求得待測透鏡之波像差係數。我們利用所測得之波像差係數來計算MTF,同時在實驗上,我們利用該透鏡對正弦光柵片之成像來量測MTF,並與上述計算所得之MTF比較。
最後,我們將建立一套兼具像差與MTF之量測與推算的機制與系統。
[1] K. Creath and A.Morales, “Contact and noncontact profiles,”
Chap. 17 in Optical Shop Testing, D. Malacara, Ed., pp.697-700, Wiley,New York (1992)
[2] Freniere, E. R. , O. E. Toler, and R. Race , “Interferogram Evaluation Program for the HP-9825A Calculator,” Opt. Eng. ,20,253-255 (1981)
[3] D. Malacara and S. L. DeVore, “Interogram Evaluation and Wavefront Fitting,” Chap. 13 in Optical Shop Testing, D. Malacara, Ed., pp.455-495, Wiley,New York (1992)
[4] J. E. Greivenkamp and J. H. Bruning, “Phase Shifting Interferometry,” Chap. 14 in Optical Shop Testing, D. Malacara, Ed., pp.501-598, Wiley,New York (1992)
[5] H. von Brug, “Zernike polynomials as a basis for wave-front fitting in lateral shearing interometry,” Appl. Opt. 36, 2788-2790 (1997)
[6] G. Harbers, P. J. Kunst, G. W. R. Leibbrandt,”Analysis of lateral shearing interograms by use of Zernike polynomials,” Appl. Opt. 35, 6162-6172 (1996)
[7]M. P. Rimmer, “Method for evaluating lateral shearing interferometer,” Appl. Opt. 13, 623-629(1974)
[8] M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear, ” Appl. Opt. 14, 142-150 (1975)
[9] H. Schreiber and J. Schwider, “Lateral shearing interferometer based on two Ronchi gratings in series,” Appl. Opt. 36, 5321-5324(1997)
[10] M. Servin, D. Malacara, and J. L. Marroquin, “Wave-front recovery from two orthogonal sheared interferograms,” Appl. Opt. 35, 4343-4348 (1996)
[11] Clemens Elster and Ingolf Weingärtner, “Solution to the shearing problem,” Appl. Opt. 38, 5024-5031 (1999)
[12] Gregory Hallock Smith, “Practical Computer-Aided Lens Design” Chap. 12, Willmann-Bell,Inc.
[13] Warren J. Smith,”Modern Optical Engineering”, Chap. 14, second Edition, McGraw-Hill,Inc.
[14] Robert L. Lamberts,”Use of Sinusoidal Test Patterns for MTF Evaluation,” Engineering Notes, Sine Patterns Llc.
[15] 孫慶成,”光電概論”,全華科技圖書有限公司.
[16] D. Malacara and S. L. DeVore, “Interogram Evaluation and Wavefront Fitting,” Chap. 13 in Optical Shop Testing, D. Malacara, Ed., pp.455-472, Wiley,New York (1992)
[17] Keigo Iizuka, “Engineering Optics, ”Chap.10,pp239-255
[18] D. Malacara and S. L. DeVore, “Interogram Evaluation and Wavefront Fitting,” Chap. 13 in Optical Shop Testing, D. Malacara, Ed., pp.465, Wiley,New York (1992)
[19] D. Malacara and S. L. DeVore, “Interogram Evaluation and Wavefront Fitting,” Chap. 13 in Optical Shop Testing, D. Malacara, Ed., pp.480-484, Wiley,New York (1992)
[20] M. V. Mantravadi, “Lateral Shearing Interferometers,”Chap. 4 in Optical Shop Testing, D. Malacara, Ed., pp.123-172, Wiley,New York (1992)
[21] Wei Shen , Ming-Wen Chang and Der-Shen Wan, “Zernike polynomial fitting of lateral shearing interferometry,” Opt. Eng. ,36,905-913 (1997)
[22]吳時光、周源華、余松煜,”數位影像處理,”儒林出版社.
[23]Toyohiko Yatagai,Suezou Nakadate,Masanori Idesawa and Hiroyoshi Saito,”Automatic fringe analysis using digital image processing techniques,” Opt. Eng. ,21,432-435 (1982)
[24]J.W.Goodman ,”Frequency Analysis of Optical Imaging System,” Chap.6 in Interoduction to Fourier Optics,McGraw-Hill,New York (1996)
[25]Wyant, J.C. ,”Double Frequency Grating Lateral Shear Interferometer, ” Appl. Opt. 12,2057(1973)
[26]A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
[27] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. Lett. 44,948 (1984)
[28] L. Young, W. K. Y. Wing, M. L. W. Thewait and W. D. Crnish, “Theory of formation of phase holograms in lithium niobate,” Appl. Phys. Lett. 24, 264 (1974).
[29] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, “Time dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials,” RCA Review 36, 213 (1975).
[30]D. VonderLinde and A. M. Glass, “Photorefractive effects for reversable holographic storage of information,” J. Appl. Phys. 8, 85 (1975).
[31] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28, 338 (1976).
[32] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[33]J. Feingerg, D. Heiman, A. R. Tanguay and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,”J. Appl. Phys. 51, 1297, (1980).