跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳思翰
Szu-Han Chen
論文名稱: 柔性結構非接觸變形量測與風壓反算
Non-Contact Measurement of the Displacement of Flexible Structure and the Back Calculation of the Surface Wind Pressure
指導教授: 王仲宇
Chung-Yue Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 192
中文關鍵詞: 風洞實驗風速壓柔性結構非接觸式影像量測順風向反應結構動態分析
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年在營建技術的發展下,高層建築使用質量輕、強度高的建築材料,致使結構對風所引發之振動效應特別敏感,使得高樓建築在設計時常考慮風力作用而進行風洞實驗,針對結構物所受風力、風壓與舒適性評估進行研究。本文係針對柔性結構於兩種不同流況中之風洞實驗進行結構變形量測,實驗量測主要利用一套非接觸式的影像量測技術,透過攝影機拍攝覘標點位,量測試體受風力拖曳產生之動態撓度歷時反應,並以試體迎風面與背風面之應變計量測應變歷時反應;分析模式則運用梁理論與風速壓預測結構受風力作用的平均撓度與應變反應,並與實驗量測結果相互比對,顯示不論低紊流或高紊流風場中,透過風速剖面參數預測結構變形軌跡均能有不錯的結果;於第五章利用白努利-尤拉梁之振動方程式,透過線性獨立的特性假設撓度與外力函數型式,更進一步推導出結構的動態行為與風壓反算之簡易方法,而與實驗量測結果比對亦相當吻合,其可作為實際結構動力反應之依據,或可提供模擬程式開發用以驗證模式準確性之資料庫數據使用。


    Due to the construction technology development in recent years, high-rise buildings use light weight and high strength materials which causes the structure to be particularly sensitive to the wind-induced vibration effects. Therefore, it is necessary to often conduct wind tunnel experiments to evaluate the wind effect on the design of high-rise building. In this thesis, the dynamic deflection responses of a flexible structure under wind actions in two different flow conditions of wind tunnel experiment were measured through a non-contact imaging analysis. The dynamic strain data were measured by strain gauges deployed at various sections at the same time. The beam theory and assumed wind pressure pattern were used to predict the average deflection and strain responses of the structure by wind action and then were compared with experimental measurements. The results show that both the predicted structural responses under the low or high turbulent wind fields will match the measured structural deformation trajectory. Besides, dynamic Bernoulli-Euler beam equation and the strain data were used to back calculate the coefficients of the assumed pressure function. The predicted deflection responses compared with experimental measurements are very consistent. This result can be used as the basis for the actual structural dynamic analysis for wind engineering. The experimental results can also be provided to verify the accuracy of wind-structure analysis software.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 2 1.3. 論文大綱 3 第二章 文獻回顧 4 2.1. 風洞實驗相關文獻 4 2.1.1. 風洞實驗之流場特性 4 2.1.2. 雷諾數效應 4 2.1.3. 阻塞效應 5 2.2. 風力對結構物之效應 6 2.2.1. 基本假設 6 2.2.2. 結構物反應 6 2.2.3. 順風向反應 7 2.3. 柔性結構風洞實驗之相關文獻 15 第三章 分析理論 16 3.1. 大氣邊界層之流場特性 16 3.1.1. 平均風速剖面 16 3.1.2. 紊流強度 18 3.2. 柔性結構變形推估 19 3.2.1. 流體作用力 19 3.2.2. 穩態平衡撓度推估 21 第四章 風洞實驗 27 4.1. 大型環境風洞 27 4.2. 實驗設備 29 4.3. 試體之材料試驗 35 4.3.1. 材料拉伸試驗 35 4.3.2. 自然振動試驗 39 4.4. 風洞實驗規劃與流程 41 4.4.1. 大風洞校正 41 4.4.2. 流場配置 45 4.4.3. 風場量測 47 4.4.4. 試體配置與實驗過程 51 4.5. 實驗結果 55 4.5.1. 低紊流風場實驗結果 57 4.5.2. 高紊流風場實驗結果 81 4.5.3. 邊界層厚度低於試體高度之實驗結果 104 4.6. 小結 115 第五章 結構振動之動態分析 119 5.1. 建立方程式 119 5.2. 求解聯立方程式 124 5.3. 數值分析流程 126 5.4. 實際算例 130 第六章 結論與建議 165 參考文獻 167 附錄 A 171

    [1] 中央氣象局-地震測報中心,20周年專刊,http://scweb.cwb.gov.tw
    [2] 張景鐘,王人牧,林煜哲,賴勇閣,「風災調查與風害模式之探討」,內政部建築研究所委託研究報告(2006)。
    [3] 內政部,「建築物耐風設計規範及解說」,營建雜誌社,(2006)。
    [4] 朱佳仁,「風工程概論」,科技圖書出版,台北(2006)。
    [5] 王仲宇,吳祚任,「橋梁系統受地震及沖刷作用之非線性行為模擬」,國科會研究報告(2012)。
    [6] Counihan, J., “Simulation of an adiabatic urban boundary layer in a wind tunnel”, Atmospheric Environment, 7, pp.673-689. (1973).
    [7] Peterka, J.A. and Cermak, J.E., “Simulation of atmospheric flows in short wind tunnel test sections”. Report for Center for Building Technology, NBC, June, CER73-74JAP-JEC32, Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado. (1974).
    [8] Gartshore, I.S. and De Cross, K.A., “Roughness element geometry required for wind tunnel simulations of the atmospheric wind”, Transactions of ASME, J. Fluid Engineering, September, pp.480-485. (1977).
    [9] Wooding, R.A., Bradley, E.F. and Marshall, J.K., “Drag due to regular arrays of roughness elements of varying geometry”, Boundary Layer Meteorology, 5, pp.285-308. (1973).
    [10] Counihan, J., “Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements”, Atmospheric Environment, 5, pp.673-689. (1971).
    [11] Kolmogorov, A.N., “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, Mathematical and Physical Sciences, Vol. 434, No.1890, pp.9-13. (1941).
    [12] Townsend, A.A., “The structure of turbulent shear flow”, 2nd edition, Cambridge University Press, p.429. (1976).
    [13] Jensen, M., “The model law for phenomena in natural wind”, Ingeioen International Edition, Vol. 2, No.4, p.121-123. (1958).
    [14] Whitbread, R.E., “Model simulation of wind effects on structures”, Proceeding of the Conference on Wind Effects on Buildings and Structures, p284-306. (1963).
    [15] Hunt, A., “Wind tunnel measurement of surface pressure on cubic building models at several scales” J. Wind Eng. Ind. Aero., Vol. 10, pp.137-163. (1982).
    [16] 葉祥海,方富民,陳若華,林得雄,「高層建築氣彈力模型風洞試驗與數值模擬研究」,內政部建築研究所委託研究報告(2005)。
    [17] 鄭啟明,吳重成,楊承翰,「高層建築耐風設計風力頻譜與風載重之修訂研究」,內政部建築研究所委託研究報告(2007)。
    [18] 簡慶文,「風敏結構之設計與可靠度分析研究」,博士論文,國立臺灣海洋大學河海工程學系(2010)。
    [19] Davenport, A.G., “The relationship of wind structure to wind loading, ” in Proceedings of the Symposium on Wind Effects on Buildings and Structures ,vol. 1, National Physical Laboratory, Teddington, U.K., London, pp. 53-102. (1965).
    [20] Davenport, A.G., “Gust loading factors”, J. of Structural Division, ASCE, 93, No.3, pp.11-34. (1967).
    [21] Vickery, B.J., “On the flow behind a coarse grid and its use as a model of atmospheric turbulence in studies related to wind loads in building”, Nat. Phys. Lab. Aero. Report 1143. (1965).
    [22] Kolmogorov, A.N., C.R. Acad. Sci. USSR 30, 301, and 32, 16. (1941).
    [23] Von Karman, T., “Progress in the statistical theory of turbulence”, Proceedings of the National Academy of Science, Washington,. D. C., pp. 530-539. (1948).
    [24] Simiu, E., and Scanlan, R. H., “Wind Effects on Structures”, 3rd Edition, John Wiley and Sons, New York. (1996).
    [25] Solari, G., “Equivalent wind spectrum technique : theory and application.” Journal of Structural Engineering, 114(6), 1303-1323. (1988).
    [26] Solari, G., “Gust buffeting I: peak wind velocity and equivalent pressure.” Journal of Structural Engineering, ASCE, Vol. 110, 2, 365-382. (1993a).
    [27] Solari, G., “Gust buffeting II: dynamic alongwind response.” Journal of Structural Engineering, ASCE, Vol. 110, 2, 383-398. (1993b).
    [28] Davenport, A. G., “Rationale for determining design wind velocities,” Journal of the Structural Division, ASCE, Vol. 46, No.ST5, pp.39-62. (1960).
    [29] Engineering Science Data Unit, California Institute of Technology, Volume L11, Number 4. (1989).
    [30] Ishizaki, H., and Nishimura, H., “Wind tunnel experiments on the vibrations of flexible models of a tall building”, Journal of Wind Engineering and Industrial Aerodynamics, Volume. 42, Issues 1-3, Pages 1065-1072. (1992).
    [31] 林世陞,「高樓結構裝設調和液柱阻尼器減振效應之風洞實驗研究」,碩士論文,國立中央大學土木工程研究所(2000)。
    [32] 吳委麟,「高層建築物頂層之高聳電信微波鐵塔之設計並用載重及強度係數設計法(LRFD)及大陸設計規範檢核其結果」,碩士論文,中原大學土木工程研究所(2001)。
    [33] 朱佳仁,「工程流體力學」,科技圖書出版,台北(2005)。
    [34] 黃柏源,「三維動態位移之數位影像量測技術」,碩士論文,國立中央大學土木工程研究所(2011)。
    [35] Chopra, A. K., “Dynamics of structures: theory and applications to earthquake engineering”, 3nd edition, Prentice-Hall, upper saddle river, NJ 07458. (2007).
    [36] White, F. M.,莊書豪,姜太倫譯,「流體力學」,美商麥格羅․希爾國際股份有限公司出版,台北(1995)。
    [37] 陳昶志,「高層建物受風影響之動力行為研究-實場監測與風洞試驗驗證(II)」,碩士論文,淡江大學土木工程學系(2009)。

    QR CODE
    :::