| 研究生: |
張瑋辰 Wei-Chen Chang |
|---|---|
| 論文名稱: |
磷化銦鎵堆疊矽(GaInP / Si) 太陽電池光電模擬 GaInP / Si Tandem Solar Cell Simulation |
| 指導教授: |
張正陽
Jeng-yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 三五族太陽電池 、多接面太陽電池 、差排缺陷 、穿隧接面 |
| 外文關鍵詞: | III-V multijunction solar cell, Threading dislocation, Tunnel junction |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,綠色能源的開發有極大的進展,尤其是太陽電池方面。太陽電池莫過於追求高效率,低成本的設計。太陽電池有很多種,其中矽單接面太陽電池製程效率已達25 %,理論只到26 %,為了進一步提昇效率必須採用多接面太陽電池的設計。三五族多接面太陽電池是目前最高效率的太陽電池,其中GaInP/GaAs/Si製程效率已超過44 %,但是有成本高的缺點。本篇論文目的在於提出三五族材料堆疊矽太陽能電池,結合三五族材料能隙選取與成熟的矽太陽電池技術結合,期望達到高效率,低成本的太陽電池。
首先,探討矽基磷化銦鎵太陽電池的模擬,從抗反射層的設計提高短路電流,探討差排缺陷在於各層之間的影響,期望看到差排缺陷的容忍範圍,並探討窗口層能隙和摻雜濃度設計,阻擋少數載子的復合減少缺陷。優化結果短路電流為14.4 mA/cm^2 ,開路電壓為1.32 V,填充因子為86.72 %,效率為16.44 %。
第二部分,探討磷化銦鎵堆疊矽太陽電池,從整體的波長抗反射設計著手,探討頂層磷化銦鎵吸收層厚度選取,期望能達到電流匹配來提昇效率。接著探討差排缺陷和復合速率影響整體多接面太陽電池短路電流和效率,最後再提到穿隧接面摻雜對於整體電池電流連接的影響。最佳短路電流為13.79 mA/cm^2、開路電壓1.92 V、填充因子 85.17 %、效率為22.48 %。
There are a variety of green energy. The solar cell is discussed the most. High efficiency and low cost are the goal. The theoretical efficiency of single silicon solar cell is 26%. The multijunction design is the way to get high efficiency. The best efficiency now is III-V multijunction solar cell, but III-V multijunction solar cell is expensive. We use III-V material which can enhance the absorption in specific wavelength, and the mature fabrication technology of silicon material. We simulate GaInP / Si tandem solar cell for high efficiency and low cost.
First, we simulate and discuss the GaInP on Si substrate solar cell. We discuss the design of antireflection coating, the threading dislocation density, the bandgap of window layer, the recombination velocity in window / emitter interface, and the doping of window layer. The optimized result are listed below. The short current density is 14.4 mA/cm^2.The open circuit voltage is 1.316 V. The fill factor is 86.72 %. The efficiency is 16.44 %.
Second, we discuss the GaInP / Si tandem solar cell. We discuss the overall antireflection coating, the top cell thickness for current match. We also discuss how the tunnel junction doping affects the whole solar cell. The optimized result are listed below. The result of the efficiency is 22.48 %. The short current density is 13.79 mA/cm^2.The open circuit voltage is 1.915 V. The fill factor is 85.17 %. The efficiency is 22.48 %.
[1]「能源產業技術白皮書」,經濟部能源局(2010)
[2] http://www.nrel.gov/ncpv/
[3] https://www.lumerical.com/solutions/solar/cell/surface_plasmon_resonance_enhanced/
[4] Makoto Konagai, Mitsunori Sugimoto and Kiyoshi Takahashi, “High efficiency GaAs thin film solar cells by peeled film technology”, Journal of Crystal Growth, vol. 45, pp. 277-280 (1978)
[5] Law, D.C. Edmondson, K.M.;Fetzer, C.M. more authors,” 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett. 90, 183516 (2007)
[6] http://web.tiscali.it/decartes/phd_html/node4.html
[7] 黃惠良,曾百亨等著,「太陽電池」,五南出版社 (2008)
[8] Nikhil Jain, “Design of III-V multijunction solar cells On silicon substrate”, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, (2013)
[9] Christopher T. Chen1, Daniel B. Turner-Evans, Hal Emmer1, Shaul Aloni, Harry A. Atwater, “Design and Growth of III-V on Si Microwire Array Tandem Solar Cells”, Photovoltaic Specialists Conference (PVSC), IEEE 39th, pp. 3397 - 3401 (2013)
[10] Matthew Wilkins, “Design of multi-junction solar cells on silicon substrates using a porous silicon compliant membrane”,Department of Electrical Engineering and Computer Science ,University of Ottawa (2013)
[11] Martin Hermle , Simon P. Philipps, Gergo Letaj, Andreas W. Bett , “Numerical simulation of tunnel diodes and multi-junction solar cells”, 33 rd IEEE Photovoltaic Specialist Conference, pp. 1 - 4 , (2008)
[12] Dennai Benmoussa, Benslimane H, Helmaoui A, Hemmani ,”A Modeling of tunnel junction (GaAs) in Cascade solar cell”. Telkomnika Indonesian Journal of Electrical Engineering, Vol.12, No.7, pp. 4924 - 4927 (2014)
[13] Mathieu Baudrit and Car/os A/gora, “Modeling of GalnP/GaAs Dual-Junction Solar Cells including Tunnel Junction”, Photovoltaic Specialists Conference, pp. 1 - 5, (2008)
[14]http://lem.ch.unito.it/didattica/infochimica/2006_Complessi%20dipiridilici%20del%20rutenio/silicio.html
[15] Shah et al,Science, 285,692-698 (1999)
[16] Z. Q. Li , Y. G. Xiao, and Z. M. Simon Li.” Two-dimensional simulation of GaInP/GaAs/Ge triple junction solar cell”, phys. stat. sol. (c) 4, No. 5, pp. 1637– 1640 (2007)
[17] Synopsys Sentaurus Device User's Manual Release: G-2012, Synopsys Inc., Zurich Switzerland,www.synopsys.com (2012)
[18] Ram Homier, Abdelatif Jaouad, Artur Turala, Christopher E. Valdivia, Denis Masson, Steven G. Wallace, Simon Fafard, Richard Ar`es, and Vincent Aimez, “Antireflection coating design for triple-junction III–V/Ge high-efficiency solar cells using low absorption PECVD silicon nitride”, IEEE Journal Of Photovoltaic, Vol. 2, No. 3 ,pp. 393 - 397 (2012)
[19] Christopher E. Valdivia, Eric Desfonds, Denis Masson, Simon Fafard,n Andrew Carlson, John Cook, Trevor J. Hall, Karin Hinzer, “Optimization of antireflection coating design for multi-junction solar cells and concentrator systems”, SPIE 7099, Photonics North,709915 (2008)
[20] S.P. Philipps, M. Hermle, G. Létay, W. Guter, B.M. George, F. Dimroth and A.W. Bett,” Numerical simulation and modeling of III-V multi-junction solar cells”, 23rd European Photovoltaic Solar Energy Conference, pp. 1 - 5 (2008)