| 研究生: |
連捷 Jie Lian |
|---|---|
| 論文名稱: |
H.264/AVC視訊片段增刪之偵測與反偵測 Detecting and Anti-Detecting Shot Insertion and Deletion in H.264/AVC Videos |
| 指導教授: |
蘇柏齊
Po-chyi Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | H264/AVC 、影片竄改偵測 、影片竄改反偵測 、畫面增刪 、影片重壓縮 |
| 外文關鍵詞: | H264/AVC, video forensic, video anti-forensic, frame adding/deletion, video transcoding |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影像與視訊處理軟體的普及讓數位資料內容的真實性遭到若干懷疑,近期許多研究試圖偵測多媒體資料是否曾被編輯或竄改,以及相對應的反偵測方式,藉由兩者的交互改進協助提昇多媒體資料的真實性。反偵測技術尋求現有偵測方式的弱點,將編輯後的多媒體資料內可能留下的某種特徵移除以讓偵測失敗。本論文提出利用畫面增刪攻擊而引入的兩種特徵,即異常編碼模式與H.264/AVC整數轉換中的量化係數分佈,實作視訊編輯竄改的反偵測方法。首先,根據連續畫面編碼模式之間的關係,在RDO (Rate Distortion Optimization)中限制不合理數量的畫面內預測模式。接著,使用編碼時的QP (Quantization Parameter)與位元率的關係,預測異常畫面內應有的整數轉換量化係數分佈,再將過多的非零係數逐步調整至預測的目標分佈,即藉由改變重建畫面內容移除可偵測特徵。完成以上步驟之後,將編碼模式與處理後的係數儲存起來,於編碼第二次時複製回去得到反偵測影片。實驗結果顯示,我們的方法成功地掩飾了視訊中的畫面增刪攻擊。論文最後也分別討論了兩個偵測方法,即使用去方塊濾波能量進行偵測,以及使用位元率控制應給定QP之偵測方法。雖然在這些方法中存在了某些限制條件,但是在合適的情況下仍具有值得研究的偵測效果。
Digital multimedia data can be edited easily by the powerful software these days. Therefore, many digital forensic techniques have been developed to authenticate multimedia content. Anti-forensic techniques are also proposed to remove editing traces. These anti-forensic methods study the weaknesses of existing detection algorithms to make editing undetectable. This thesis presents an anti-forensic method employing two features, abnormal coding modes and distribution of quantized transform coefficients, which are generated by the frame/scene adding or deletion. First, the coding modes are examined in the Rate Distortion Optimization (RDO) process to limit the use of intra coding blocks in certain frames. Then, the relationship between QP and rate are examined to predict the reasonable distribution of quantized coefficients. Next, we change the reconstruction content to erase the detection features by adjusting the quantized coefficients according to the predicted distribution. Following the above steps, we store the coding modes and the processed coefficients and then copy them back in the second encoding process. The experimental results show that our scheme can successfully eliminate the features. Finally, we discuss two possible detection methods, deblocking energy and examining QP values in the rate control. The former method detects the forgery by checking the deblocking intensity of the reconstruction frames, and the latter method uses a known rate control mechanism to determine whether a correct QP value is assigned. These methods are effective in certain appropriate conditions and deserve more discussions.
[1] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, “Determining image origin and integrity using sensor noise,” IEEE Transactions on Information Forensics Security, vol. 3, no. 1, pp. 74–90, 2008.
[2] Swaminathan, M. Wu, and K. J. R. Liu, “Digital image forensics via intrinsic fingerprints,” IEEE Transactions on Information Forensics Security, vol. 3, no.1, pp. 101–117, 2008.
[3] Avcibas, S. Bayram, N. Memon, M. Ramkumar, and B. Sankur, “A classifier design for detecting image manipulations,” IEEE International Conference on Image Processing, vol. 4, pp. 2645–2648, 2004.
[4] Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., Tagliasacchi, M., and Tubaro, S. , “An overview on video forensics.” APSIPA Transactions on Signal and Information Processing, vol.1, no.1, 2012.
[5] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting double MPEG compression,” Proceedings of the 8th ACM workshop on Multimedia and Security, pp.37-47, 2006.
[6] W. Wang and Farid, H., “Exposing digital forgeries in interlaced and de-interlaced video,” IEEE Transactions on Information Forensics and Security, vol.2, no. 3, pp.438-449, 2007.
[7] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, “Source digital camcorder identification using sensor photo response non-uniformity,” Proceedings of SPIE on Security, Steganography, and Watermarking, vol. 6505, 2007.
[8] C. Kraetzer, A. Oermann, J. Dittmann, and A. Lang, “Digital audio forensics: A first practical evaluation on microphone and environment classification,” Proceedings of 9th ACM Workshop on Multimedia and Security, pp. 63–74, 2007.
[9] D. Garcia-Romero and C. Y. Espy-Wilson, “Automatic acquisition device identification from speech recordings,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1806–1809, 2010.
[10] M. Kirchner and R. Böhme, “Hiding traces of resampling in digital images,” IEEE Transactions on Information Forensics Security, vol.3, no.4, pp. 582–592, 2008.
[11] T. Gloe, M. Kirchner, A. Winkler, and R. Böhme, “Can we trust digital image forensics?,” Proceedings of the15th ACM International Conference on Multimedia, pp.78–86, 2007.
[12] M. C. Stamm, S. K. Tjoa,W. S. Lin, and K. J. R. Liu, “Anti-forensics of JPEG compression,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1694–1697, 2010.
[13] Stamm, M.C. and Liu, K.J.R., “Anti-Forensics for frame deletion/addition in mpeg video,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1876-1879, 2011.
[14] Stamm, M.C., Lin, W.S. and Liu, K.J.R., “Temporal Forensics and Anti-Forensics for Motion Compensated Video,” IEEE Transactions on Information Forensics and Security, vol.7, no.4, pp.1315-1329, 2012.
[15] He, Zhihai, and Dapeng Oliver Wu, “Linear rate control and optimum statistical multiplexing for H. 264 video broadcast,” IEEE Transactions on Multimedia, vol.10, no.7, pp.1237-1249, 2008.
[16] Ma, Siwei, Wen Gao, and Yan Lu, “Rate-distortion analysis for H. 264/AVC video coding and its application to rate control,” IEEE Transactions on Circuits and Systems for Video Technology, vol.15, no.12, pp. 1533-1544, 2005.
[17] Tel, Till Halbach., “Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q. 6).”
[18] JM.18 Reference Software. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/.
[19] Gabarda, Salvador, and Gabriel Cristóbal., “Blind image quality assessment through anisotropy,” The Journal of the Optical Society of America A, vol.24, no.12, pp.42-51, 2007.