| 研究生: |
謝育霖 Yu-Lin Hsieh |
|---|---|
| 論文名稱: |
以OES光譜進行ECR-CVD太陽電池用氫化氧化矽薄膜製成分析 Using OES to analyze the hydrogenated silicon oxide film ECR-CVD process for solar cell |
| 指導教授: |
利定東
Tomi T. Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 氫化氧化矽薄膜 、電子回旋共振化學氣象沉積 、光放射光譜儀 |
| 外文關鍵詞: | SiOx:H, OES, ECR-CVD |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用光放射光譜儀(Optical Emission Spectroscopy,OES)探討電子迴旋共振化學氣相沉積(ECR-CVD)之氫化氧化矽薄膜製程電漿光譜與沉積薄膜特性之關連性。研究中以不同電漿功率、操作壓力、氫稀釋濃度及二氧化碳稀釋濃度等條件,利用光放射光譜儀(OES)探測氫化氧化矽薄膜製程中之關鍵電漿物種Si*(288nm)、SiH*(414nm)、Hβ*(486nm)、O*(604nm)、Hα*(656nm)之光譜強度變化趨勢,並以不參與反應的Ar*(750nm)譜線做為參考基準,計算相對物種濃度變化,對照相同條件所沉積薄膜之光電特性並進行分析研究。
總結實驗結果發現在固定總流量與壓力之條件下,可利用OES之SiH*光譜推測出沉積速率之相對關係;在參與反應之相關物種鍵能均比Si-O鍵能低之條件下,可透過O*光譜推測各實驗薄膜中相對氧含量;透過上述光譜與薄膜特性之對應,建立本系統之相關參數資料庫,將可縮短薄膜製程優化時間。
最後發現氫化氧化非晶矽薄膜在800W 、350℃、5mTorr之工作環境下,分別當CO2/SiH4比值小於0.2與H2/SiH4之比值大於10後薄膜會開始有結晶相的產生。
The Optical Emission Spectroscopy (OES) has been used as a diagnostic tool for analyzing the plasma spectrum of Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD) in silicon oxide thin film process. In this study, the correlation between spectrum variation trend and SiOx film properties has been discussed.
The results shown when the total flow rate and working pressure were fixed, the silicon oxide deposition rate could be conjectured by SiH* spectroscopy. Moreover, on the premise that the bond energy of reaction species were lower than Si-O bond, the O* spectroscopy intensity would positive correlation with oxygen content of thin film. Based on the above results, we could develop the database about plasma spectra and film properties, and then the time requirement for silicon oxide process optimization will reduce significantly.
Finally, in 800W, 350°C and 5mTorr, we found the hydrogenated amorphous silicon oxide would transform to the crystalline phase when CO2/SiH4 ratio was less than 0.2 and H2/SiH4 ratio greater than 10.
[1] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] 顧鴻濤,太陽能電池元件導論,全威出版社,2008年6月。
[3] National renewable energy laboratory(USA), 2012, http://www.nrel.gov/
[4] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125–129, 2005.
[5] Kumar P., et al. “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol.33, pp.3938–3944, 2008.
[6] Sanjay. K. R, et al. “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol.7, pp.553–556, 2010.
[7] Lien S.Y, et al. “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol.357, pp.161–164, 2011.
[8] Fukuda Y, et al. “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol.386, pp. 256–260, 2001.
[9] Matsuda A, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol.337, pp.1–6, 1999.
[10] Hsiao H. L., et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol.142, pp.316–321, 1999.
[11] Takai M, et al. “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol.77, pp.2828–2830, 2000.
[12] Wu Z, et al. “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol.33, pp.125–129, 2006.
[13] Brian. C, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[14] Venables J. A., et al. “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol.47, pp. 399, 1984.
[15] Haga K., et al. “Wide Optical-Gap a-Si:O:H Films Prepared from SiH4–CO2 Gas Mixture”, Jpn. J. Appl. Phys., Vol.25, pp.39–41, 1986.
[16] Janotta A, et al. “Dependence of the doping efficiency on material composition in n-type a-SiOx:H”, Journal of Non-Crystalline Solids, Vol.299,pp.579–584, 2002.
[17] Philipp H.R, “Optical properties for non-crystalline Si, SiO, SiOx and SiO2” Journal of Physics and Chemistry of Solids, Vol.32, pp.1935–1945, 1972.
[18] Temkin R.J, “An analysis of the radial distribution function of SIOx”, Journal of Non-Crystalline Solids, Vol.17, pp.215–230, 1975.
[19] Haga K. and Watanabe H. , “Optical Properties of Plasma-Deposited Silicon-Oxygen Alloy Films”, Jpn. J. Appl. Phys. ,Vol.29, pp.636–639, 1990.
[20] C.H. Lin, S.C. Lee, and Y.F. Chen, “ Strongroom-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon ”, Appl. Phys. Lett., Vol.63, pp.902–904, 1993.
[21] Haga K. and Watanabe H., “ A structural interpretation of Si-O-Si vibrational absorption of high-photoconductive amorphous a-SiOx:H films ”, Journal of Non-Crystalline Solids , Vol.195, pp.72–75, 1996.
[22] Lucovsky G., et al. “ Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B ,Vol.28,pp.3225–3233,1983.
[23] H. Watanabe, K. Haga and T. Lohner, “Structure of high-photosensitivity silicon-oxygen alloy films’’, Journal of Non-Crystalline Solids,Vol.164, pp.1085–1088,1993.
[24] Debajyoti Das, S.M Iftiquar, and A.K Barua “Wide optical-gap a-SiO:H films prepared by rf glow discharge’’, Journal of Non-Crystalline Solids, Vol.210, pp.148–154, 1997.
[25] Kushner M. J., “A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon” , J. Appl. Phys., Vol. 63, pp.2532–2551, 1988.
[26] Guizot J. L., Nomoto K. and Matsuda A.,“Surface reactions during the a-Si : H growth in the diode and triode glow-discharge reactors”, Surface Science,Vol.244,pp.22–38,1991.
[27] Kawasaki H., et al. “Roles of SiH3 and SiH2 Radicals in Particle Growth in rf Silane Plasmas”, Jpn. J. Appl. Phys., Vol.36, pp.4985–4988, 1997.
[28] Matsuda A., et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol.78, pp.3–26,2003.
[29] Tristant P., et al. “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol.390, pp. 51–58, 2001.
[30] Robertson, R. D., Hils, H. Catham, and A. Gallagher, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol.43, pp.54, 1983.
[31] A. Francis, et al. “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol. 71, pp. 3796–3799, 1997.
[32] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文,2008年。
[33] Thomas L., et al. “ Microwave plasma chemical vapour deposition of tetramethylsilane: correlations between optical emission spectroscopy and film characteristics ”, Surface and Coatings Technology, Vol.142, pp.314-320.2001.
[34] Kholodkov A. V., Golant K. M.and Nikolin I. V., “Nano-scale compositional lamination of doped silica glass deposited in surface discharge plasma of SPCVD technology”, Microelectronic Engineering, Vol.69, pp.365-372,2003.
[35] Escobar-Alaron L., et al. “Characterization of rear- and front-side laser ablation plasmas for thin-film deposition”, Applied Surface Science, vol.197, pp.192-196,2002.
[36] Benissad N., et al. ” Silicon dioxide deposition in a microwave plasma reactor ”. Surface and Coatings Technology. Vol.116, pp.868–873,1999.
[37] Aumaille K., et al.” A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor”, Thin Solid Films, Vol. 359,pp. 188–196, 2000.
[38] Granier A, et al. “Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition”, Plasma Sources Science and Technology, Vol.12, pp.89–96, 2003.
[39] Zambrano G, et al. “Optical emission spectroscopy study of r.f. magnetron sputtering discharge used for multilayers thin film deposition”, Surface and Coatings Technology, Vol.72, pp.144–149, 2003.
[40] Nicolazo F, et al. “Study of oxygen/TEOS plasmas and thin SiOx films obtained in an helicon diffusion reactor ”,Surface and Coatings Technology,Vol.98, pp.1578–1583,1998.
[41] Clay K.J, et al. “Characterization of a‐C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy ”, J. Appl. Phys., Vol.79, pp.7227–7233.1996.
[42] Czerwiec T, et al. “Determination of O atom density in Ar-O2 and Ar-O2-H2 flowing microwave discharges”, Surface and Coatings Technology, Vol.98, pp.1411-1415,1998.
[43] Riccardo d, Francesco C., and Francesca I., “Mechanisms of deposition and etching of thin films of plasma‐polymerized fluorinated monomers in radio frequency discharges fed with C2F6‐H2 and C2F6‐O2 mixtures”, J. Appl. Phys., Vol.61, pp.2754–2762,1987.
[44] Horii N. M, Okimura K., and Shibata A, “Investigation of SiO2 deposition processes with mass spectrometry and optical emission spectroscopy in plasma enhanced chemical vapor deposition using tetraethoxysilane”. Thin Solid Films, Vol.343, pp.148-151,1999.
[45] Hsiao H. L, et al. “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol.142, pp.316–321, 1999.
[46] Yoon S.F, et al. “Effect of microwave power on the electron energy in an electron cyclotron resonance plasma”, Vacuum, Vol.61, pp.29–35, 2001.
[47] Durrant S.F,De Moraes M.A.B.and Mota R.P,” Plasmapolymerized hexamethyldisiloxane: discharge and filmstudies”, Vacuum, Vol.47, pp.187-192,1996.
[48] Tomonori N., et al. “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol. 299, pp.1116–1122, 2002.
[49] Guha S., et al. “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444–1446, 1992.
[50] 薛晨陽等,半導體薄膜光譜學,科學出版社,2008年。
[51] Srikar V.T. , et al., “Micro-Raman measurement of bending stresses in micromachined silicon flexures”,JMEMS.,Vol.12,pp.779–787,2003.
[52] Anton J.,et al., “Growth Rate Effect on 3C-SiC Film Residual Stress on (100) Si Substrates”, Materials Science Forum, Vol. 645,pp. 143-146,2009.
[53] Sarau, G., et al., “Statistical analysis of internal stresses and defect densities in multi-crystalline silicon thin film solar cells on glass using Macro-Raman spectrosc”, Photovoltaic Specialists Conference (PVSC) 2011 37th IEEE, pp.3366 -3369, Washington State Convention Center Seattle, WA, USA
[54] 吳昭穎,「TE模式墊子迴旋共振化學氣象沉積之矽薄膜電將光譜研究」,國立中央大,碩士論文,2011年。