| 研究生: |
李銘捷 Li, Ming-jie |
|---|---|
| 論文名稱: |
低溫製備薄型矽基鍺磊晶薄膜:硼重摻雜層與本質層之研究 Low Temperature Growth of Silicon-based Epitaxial Heavy Boron-doped Germanium Films and Silicon-based Epitaxial Intrinsic Germanium Films. |
| 指導教授: |
張正陽
Jeng-yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 電子迴旋共振沉積法 、矽基鍺薄膜 、硼摻雜層鍺薄膜 、本質層鍺薄膜 、鍺薄膜 |
| 外文關鍵詞: | ECR-CVD, silicon-based germanium thin films, boron-doped germanium thin films, intrinsic germanium thin films, germanium thin films |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用電子迴旋共振化學氣相沉積法低溫(210°C)成長薄型硼重摻雜鍺磊晶薄膜與本質層鍺磊晶薄膜。硼重摻雜鍺薄膜可利用在矽基鍺光偵測器上,其中硼摻雜可以改善薄膜電性、增進元件效能,但會降低結晶品質,由調變電子迴旋共振化學氣相沉積系統成長參數並對薄膜做後退火處理,以改善結晶情形。本質層鍺磊晶薄膜可應用於矽基砷化鎵太陽能電池中,作為砷化鎵薄膜和矽基板的緩衝層,而鍺的厚度會影響底部電池的光吸收,我們將成長薄型之鍺緩衝層,再調變退火參數,得到結晶品質最佳之薄膜。
藉由調變電子迴旋共振化學氣相沉積系統之製程參數,低溫成長薄型硼重摻雜鍺磊晶薄膜。X光繞射結果顯示,薄型重摻雜鍺薄膜為(311)單晶。而鍺薄膜之半高寬隨氫氣流量增加而提高,原因在於過多氫氣對鍺表面進行蝕刻,造成薄膜品質下降。此外我們使用穿透式電子顯微鏡與原子力顯微鏡分析薄膜表面與結構,得知薄膜厚度為30 nm,而方均根值為0.67 nm。此結果顯示,薄膜表面粗糙度為元件等級的水準。另一方面,電性對元件性質影響很大,因此本實驗藉由重摻雜來提高薄膜之電性。而霍爾量測系統顯示磊晶鍺薄膜之最佳電阻率、載子濃度和載子遷移率分別為5.9×10-4 Ω-m、6.03×1020 cm-3、17.6 cm2/V-s。
本研究成長出120nm之本質層鍺薄膜,再以不同的參數做退火處理,經XRD和SIMS量測,發現除了單一溫度退火(700°C、持續5分鐘)後之薄膜,其他退火參數都會造成薄膜和基板互相擴散,使XRD半高寬下降。我們最後獲得退火後薄膜之XRD半高寬為288 arcsec。將120nm之本質層鍺薄膜分別沉積0°與偏6°矽基板上,再分別於鍺薄膜上成長ㄧ層砷化鎵薄膜。由XRD量測得到,0°與偏6°矽基板之砷化鎵薄膜,其XRD半高寬分別為291 arcsec和454 arcsec。主因於偏6°基板上的砷化鎵薄膜,原子結晶會較差。
In this study, the silicon-based epitaxial heavy boron-doped germanium films and silicon-based epitaxial intrinsic germanium films is grown by electron cyclotron resonance chemical vapor deposition.
Heavy boron-doped germanium epilayer is available for the application in silicon-based germanium photodetectors. In this study, we grow the heavy boron-doped germanium epilayer at vary growth parameter using electron cyclotron resonance chemical vapor deposition system at low growth temperature of 180°c, then the films is annealed, which improve the crystallization. The XRD patterns of the boron doped Ge epilayers that exhibits the crystalline phase at 53.7 degree corresponding to the (311)crystal orientations, while the XRD FWHM of the films is increased when the H2 flow rate is decresed, due to the etching effect on the Ge surface by excess hydrogen atoms. Besides, we use TEM and AFM to analysis the surface and the structure of the films. Then, we found that the thickness is 30nm and the RMS roughness is 0.67nm. These shows the quality of the films is suit to apply in device. The electrical properties of boron-doped Ge epilayers on Si substrates are characterized by Hall measurements. the resistivity of the best quality of boron doped Ge epilayers is 5.9×10-4 Ω-m, the carrier concentration is 6.03×1020 cm-3 and the carrier mobility is 17.6 cm2/V-s.
Intrinsic epitaxial germanium films is available for the application in silicon-based GaAs solar cells, as the buffer layer between the GaAs layer and the silicon substrate. In this study, we grow intrinsic germanium films by ECR-CVD system and anneal it at different processes in order to improve the crystallization of the films. XRD and SIMS results show that only the process of annealing at 700°c for 300s will obtain the best XRD FWHM(288arcsec) of Ge epilayers, due to over annealing time lead the silicon and germanium interdiffusion. On the other hand, we grow the intrinsic germanium films on a no offcut and a 6°offcut silicon substrate as the virtual substrates. Then, we grow GaAs films on the two virtual substrates. By XRD analysis, the XRD FWHM of the no offcut and a 6°offcut GaAs films is 291 arcsec and 454 arcsec, repectively.
[1] M. Bosi and G. Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials, 56, 146–174 (2010)
[2] H. Cong, C. Xue, Z. Liu, C. Li, B. Cheng, and Q. Wang, "High-speed waveguide-integrated Ge/Si avalanche photodetector," Chinese Physics B, 25, 058503 (2016)
[3] Y. Horie, L. Décosterd, R. Suzuki, Y. Ishikawa, and K. Wada, "Emission wavelength tuning by mechanical stressing of GaAs/Ge/Si microbeams," Optics Express, 19, 15732 (2011)
[4] G. Masini, "Germanium photodetectors enable scalable silicon photonics," SPIE Newsroom, 2008.
[5] L. C. Hu et al., "Comparative and integrative study of Langmuir probe and optical emission spectroscopy in a variable magnetic field electron cyclotron resonance chemical vapor deposition process used for depositing hydrogenated amorphous silicon thin films," Thin Solid Films, 570, 574–579 (2014)
[6] T.-H. Chang et al., "Low temperature (180°C) growth of smooth surface germanium Epilayers on silicon substrates using electron Cyclotron resonance chemical vapor deposition," International Journal of Photoenergy, 2014, 1–8 (2014)
[7] A. Matsuda, et al., "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells, 78, 3-26 (2003)
[8] T. F. Wietler, A. Ott, E. Bugiel, and K. R. Hofmann, "Advances in surfactant-mediated growth of germanium on silicon: High-quality p-type Ge films on Si," Materials Science in Semiconductor Processing, 8, 73–77 (2005)
[9] Y. Bogumilowicz and J. M. Hartmann, "Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers," Thin Solid Films, 557, 4–9 (2014)
[10] Y.-H. Kil et al., "Growth of a Ge layer on 8in. Si (100) substrates by rapid thermal chemical vapor deposition," Materials Science in Semiconductor Processing, 21, 58–65 (2014)
[11] D. Choi, J. S. Harris, E. Kim, P. C. McIntyre, J. Cagnon, and S. Stemmer, "High-quality III–V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication," Journal of Crystal Growth, 311, 1962–1971 (2009)
[12] K. Kawaguchi, H. Ebe, M. Ekawa, A. Sugama, and Y. Arakawa, "Formation of Ge-diffusion-suppressed GaAs layers and InAs quantum dots on Ge/Si substrates," Journal of Crystal Growth, 312, 2919–2922 (2010)
[13] J. Z. Li et al., "Growth and characterization of GaAs layers on polished Ge/Si by selective aspect ratio trapping," Journal of Crystal Growth, 311, 3133–3137 (2009)
[14] J. G. Cederberg, D. Leonhardt, J. J. Sheng, Q. Li, M. S. Carroll, and S. M. Han, "GaAs/Si epitaxial integration utilizing a two-step, selectively grown Ge intermediate layer," Journal of Crystal Growth, 312, 1291–1296 (2010)
[15] T. H. Loh et al., "Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition," Applied Physics Letters, 90, 092108 (2007)
[16] J. Mantey, W. Hsu, J. James, E. U. Onyegam, S. Guchhait, and S. K. Banerjee, "Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin c-doped Ge buffer layer," Applied Physics Letters, 102, 192111 (2013)
[17] G. Han, Q. Zhou, P. Guo, W. Wang, Y. Yang, and Y. C. Yeo, "In situ Boron (B) doped germanium (Ge: B) grown on (100), (110), and (111) silicon: Crystal orientation and B incorporation effects," ECS Transactions, 50, 1025–1030 (2013).
[18] I.-H. Wong, Y.-T. Chen, S.-H. Huang, W.-H. Tu, and C. W. Liu, "Junctionless gate-all-around pFETs using <italic>In-situ</italic> Boron-Doped Ge channel on Si," IEEE Transactions on Nanotechnology, 14, 878–882 (2015)
[19] Y.-H. Kil et al., "Doping-concentration dependence of a boron-doped p-type Ge layer grown on a Si (100) substrates by using RTCVD," Journal of the Korean Physical Society, 64, 443–450 (2014)
[20] H. Huang, H. Shen, T. Wu, L. Lu, Z. Tang, and J. Shen, "Properties of boron-doped μc-ge: H films deposited by hot-wire CVD," Journal of Wuhan University of Technology-Mater. Sci. Ed., 30, 516–519 (2015)
[21] J. Aubin, J. M. Hartmann, M. Bauer, and S. Moffatt, "Very low temperature epitaxy of Ge and Ge rich SiGe alloys with Ge2H6 in a reduced pressure – chemical Vapour deposition tool," Journal of Crystal Growth, 445, 65–72 (2016)
[22] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, "Low surface roughness and threading dislocation density Ge growth on Si (001)," Journal of Crystal Growth, 310, 4273–4279 (2008)
[23] H. J. Oh, K. J. Choi, W. Y. Loh, T. Htoo, S. J. Chua, and B. J. Cho, "Integration of GaAs epitaxial layer to Si-based substrate using Ge condensation and low-temperature migration enhanced epitaxy techniques," Journal of Applied Physics, 102, 054306 (2007)
[24] Z. Zhou, Z. Cai, C. Li, H. Lai, S. Chen, and J. Yu, "Promoting strain relaxation of Si0.72Ge0.28 film on Si (100) substrate by inserting a low-temperature Ge islands layer in UHVCVD," Applied Surface Science, 255, 2660–2664 (2008)
[25] Y. Yamamoto, P. Zaumseil, T. Arguirov, M. Kittler, and B. Tillack, "Low threading dislocation density Ge deposited on Si (100) using RPCVD," Solid-State Electronics, 60, 2–6 (2011)
[26] https://en.wikipedia.org/wiki/P%E2%80%93n_junction
[27] http://in.ncu.edu.tw/osc/3_1_2.htm
[28] https://en.wikipedia.org/wiki/X-ray_crystallography
[29] http://in.ncu.edu.tw/ncu7020/Instrument/
[30] http://www.ndl.org.tw/NdlUC/Intro-NM013.aspx
[31] H.-C. Luan et al., "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters, 75, 2909 (1999)
[32] M. Yamaguchi, "Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices," Journal of Materials Research, 6, 376–384 (1991)
[33] J. M. Hartmann, A. Abbadie, J. P. Barnes, J. M. Fédéli, T. Billon, and L. Vivien, "Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; low temperature surface passivation of Ge by Si," Journal of Crystal Growth, 312, 532–541 (2010)