| 研究生: |
臧志仁 Chih-Jen Tsang |
|---|---|
| 論文名稱: |
雷射干涉儀於共焦顯微系統之軸向定位控制 Using Interferometer to Control Axial Position in Confocal Microscope |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 共焦顯微術 、干涉術 、模糊滑動控制 、精密定位控制 |
| 外文關鍵詞: | Confocal microscope, Interferometry, Fuzzy slidi |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文架設一套差動式共焦顯微系統,並設計一模糊滑動控制器來抑制共焦顯微系統中掃描平臺的軸向擾動量。系統以麥克森干涉儀為感測器的位置回授裝置,實驗驗證,控制器可有效抑制12dB軸向擾動量,使掃描平臺動態定位穩態誤差小於25nm以下。
共焦顯微系統系統的縱向位移反應曲線斜率為2.03/?m,在考慮0.3%光源雜訊下,具有4nm的軸向解析度。本文選用鋁鍍膜試片作為樣本,經由自行架設的共焦顯微系統,經光強度-階高換算測得試片表面階高為369.4nm。
In thesis , A differential co confocal microscopy, which with a fuzzy controller for suppressing the longitudinal disturbance of scanner in confocal microscopy, was developed. The system use Michelson interferometer as position control sensor. The experimental result shows that the fuzzy controller is effective in 12dB of the longitudinal disturbance suppression. And the system''s position error is within 25nm.
The experimental result shows that the slop of the intensity versus longitudinal displacement (SILD) curve is enhanced to 2.03/?m. To consider 0.3% noise in the system, a depth resolution as high as 4 nm has been achieved. A al-coating step height was measured. According to the difference of intensity and the SILD, a 369.4 nm step height was obtained.
[ 1 ] E.ABBE, , Archiv. Mikros . Anat ., 9, 413. , (1873)
[ 2 ] T.Yamazaki,I. Komuro,and Y. Yazaki, J. Mol. Cell Cardiol.27, 133, (1995)
[ 3 ] T. Wilson and C. J. R. Sheppard, ”Theory and practice of scanning optical microscopy”, Academic Press, London, (1984)
[ 4 ] C.J.R. Sheppard and D.M. Shotton, ”Confocal laser scanning microscopy”, Springer, New York, (1997).
[ 5 ] S.W. HELL, ”Enhancing the axial resolution in far-field light microscopy :two-photon 4Pi confocal fluorescence microscopy”, Journal modern optics, VOL . 41, NO. 4, 675-681 , (1994)
[ 6 ] C. H. Lee, H. Y. Mong, and W. C. Lin, ”Noninterferometric wide-field optical profilometry with nanometer depth resolution”, Optics Letters. 27, pp.1773, (2002)
[ 7 ] C. H. Lee, and J. Wang, ”Noninterferometric differential confocal microscopy with 2- nm depth resolution”, Optics Communications. 135, pp.233, (1997)
[ 8 ] C. H. Lee, W. C. Lin and J. Wang, “Using differential confocal microscopy to detect the phase transition of lipid vesicle membranes”, Optical. Engineeing. 40, pp.2077, (2001).
[ 9 ] A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K.Mikuriya, M. Abe, and I. Umeda, “High-speed confocal fluorescent microscopy using a Nipkow scanner with microlenses for 3-d imaging of single fluorescent molecule in real time” Bioimages_2_, 57–62 , (1996).
[ 10 ] H. Richter, E. A. Misawa, and D. A. Lucca, “Characterization ofnonlinearities in a piezoelectric positioning deivce”, in Proc. IEEE International Conf. Control Applications, Vol. 1, pp. 717-720, (1997).
[ 11 ] Leigh, T. and Zimmerman, D.”An implicit method for the nonliner modeling and simulation of piezoceramic actrators displaying hystersis”, Smart structures and materials,AD-Vol.24/AMD-Vol.123,ASME , pp.57-63, (1991)
[ 12 ] P. R. Moore and T. W. Thatcher, “Compensation in Pneumatically Actuated Servomechanisms”, Trans. Inst. Measurement and Control, Vol.7, pp. 238-244, (1985)
[ 13 ] R.Oboe , A.Beghi, “Modeling and control of a dual stage actuator hard disk with piezoelectric secondary actuator”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 138-143, (1999)
[ 14 ] R.B.Evans,J.S.Griesbach, ”piezoelectric Microactuator for dual stagecontrol”, IEEE Trans. Magn. Vol.35, No.2, pp.977-982, (1999)
[ 15 ] J. S Steven, C. M William, J. M Robert, ”On compensator design for Linear time-Invariant dual-Input signal-output system”, IEEE/ASME Trans. Mechstron., Vol.6 , No.1 , pp.50-57, (2001)
[ 16 ] 陳承賢, ”線性步進馬達結合壓電制動器之次微米定位控制”, 國立中興大學機械工程研究所,碩士論文民國八十九年。
[ 17 ] C. J Li, Homayo S. M. Beigi, S Li and J Liang, “Nonlinear piezo-actuator control by learning self-tuning regulator”, ASME, Journal of Dynamic, Systems, Measurement, and Control, Vol. 115, pp. 720-723, (1993)
[ 18 ] J. M Han, T. A Adriaens, L. de Ko Willem, and Reinder Banning, “Modeling piezoelectric actuators”, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, pp331-341, (2000)
[ 19 ] L.A. Zadeh, ”Fuzzy sets, ”Information and control, Vol.8, pp.338-353, (1965)
[ 20 ] E. H.Mamdani, , S. Assilian, “A fuzzy logic controller for a dynamic plant”, Int. J. Man, Maching Study, 7, pp.1-13, (1975)
[ 21 ] T. J.Procky and E. H. Mamdani, “Alinguistic self-organizing process controller”, Automatica, Vol.5, pp.15-30, (1979)
[ 22 ] Shao, Shihuang, “Fuzzy self-organizing controller and its application for dynamic processes”, Fuzzy Sets and System26, pp.151-164, (1988)
[ 23 ] B. S Zhang, and J. M Edmunds, “Self-Organizing Fuzzy Logic Controller”, IEE Proceedings-D, Vol.139, No.5, pp.460-464, (1992)
[ 24 ] S.W Kim, J.J Lee, “ Design of a fuzzy controller with fuzzy sliding surface ” Fuzzy Sets & Systems, Vol.71, No.3, pp.359-67.Netherlands, 12 May, (1995)
[ 25 ] J.C Lo,Y-H Kuo, “Decoupled fuzzy sliding-mode control “,IEEE Trans. on Fuzzy Systems, Vol.6,No.3, pp.426-435, August, (1998)
[ 26 ] J.F Shiu and C.M Lin, “ Decoupled fuzzy controller designed with fuzzy sliding surface” Automatic control conference, pp.463-468., (2000)
[ 27 ] McGraw-Hill “Introdution to fourier optis”, ch5, San Franciso, (1986).
[ 28 ] 何展効 “Mirau干涉術應用於超音波量測之研究” ,中華民國音響學會第十七屆學術研討會論文集
[ 29 ] 足立修一“控制之系統鑑別” 全華科技圖書,民國九十年。
[ 30 ] 徐之正“光束擾動之適應性控制” 碩士論文,中央大學機械工程研究所,民國八十九年。
[ 31 ] 劉金琨“滑模變結構控制matlab仿真” 清華大學出版社,民國九十四年。