| 研究生: |
陳智勇 Chi-Yung Chen |
|---|---|
| 論文名稱: |
雷射加熱提拉生長法生長不同配比鈮酸鋰晶纖與性質之量測 Growth and Properties of Different Compositions of LiNbO3 Single Crystal Fiber by LHPG method |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 化學計量配比鈮酸鋰 、鈮酸鋰 |
| 外文關鍵詞: | stoichiometric lithium niobate, LN, lithium niobate |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用雷射加熱基座提拉法(LHPG)生長化學劑量配比鈮酸鋰之晶纖。在化學劑量配比鈮酸鋰晶體生長的機制上,成功發現使用LHPG法生長化學劑量配比鈮酸鋰時的長晶機制,它是依循著平衡相圖的觀念,也就是說晶體所生長出來的[Li]/[Nb]的濃度配比是依照當時熔區中Li的濃度來生長的,所以晶體的Li濃度會隨著生長的長度而漸漸增加,當熔區中Li濃度達到58 mole %時才從熔區中生長出化學劑量配比鈮酸鋰,並非直接從熔區中淬火生長出化學劑量配比,這樣的結果我們可以經由化學分析電子光譜儀(ECSA)得知。對於所生長出來的晶體,我們還使用了X光粉末繞射儀、單晶繞射儀、光學顯微鏡與感應偶合電漿質譜儀等儀器來幫助我們對於晶體的研究。
由於鈮酸鋰有一個非常大的固熔區,利用研究得到的長晶機制,可以藉由控制提供的材料棒濃度來控制所生長出來的LN晶體濃度,並藉由控制晶種濃度來加快生長的速度,進而成功生長出固熔區中不同配比的鈮酸鋰。對於鈮酸鋰的性質量測,我們使用UV吸收光譜、FTIR光譜與Raman光譜等光學儀器來確定其性質,並從結果中來討論其中的物理特性。
在不同配比LN組成(Li1-xNb1+xO3,0 ≤ x ≤ 0.12)中,可以藉由不同配比LN晶體所得到的拉曼光譜來解釋光誘發o-e散射效應,可以藉由分析光譜中之峰值強度來分析其與晶體的鋰空缺情形之關係。而入射的o-wave穿透光轉換成e-wave散射光也會隨著以空缺的增加而增加,並從中研究其能量轉換與轉換效率。
In this study, SLN single crystal fibers are grown by the laser-heated pedestal growth technique. We successfully find out the growth mechanisms of SLN single crystal by utilizing LHPG method. This growth mechanism is followed the equilibrium phase diagram concept. The composition of [Li]/[Nb] of the grown crystal fibers are based upon the Li2O concentration in the melting zone during growing process. Therefore, the Li2O concentration within the crystal fiber will gradually increase with the grown length. When the Li2O concentration reaches to 58 mole%, the SLN is obtained and it is not grown from the melting zone by quenching. We can examine the growth mechanism by ECSA. Besides, we can also use the XRPD、XRD/CCD、OM and ICP-AES to help us to investigate the properties of the grown crystals.
LN has a wide solid solution phase field. Using the fore-mentioned growth mechanism, we can grow different compositions of LiNbO3 single crystal fibers by controlling the composition of the feeding rod. By controlling the seed rods, we can reduce the grow time. We followed the aforementioned growth mechanism to successfully grow different composition LN single crystal fibers. We investigate the optical properties of the crystal fibers form the equipments of UV absorption edge, IR absorption spectrum and Raman spectrum. We also discuss the physic characteristics from the measured optical properties.
In different composition LN crystals (Li1-xNb1+xO3,0 ≤ x ≤ 0.12), we can explain the light induced o-e scattering effect from Raman spectrum. By analyzing the Raman spectra, the relationship between the intensity of Raman phonons and Li vacancies can be found. The energy transformation increased due to the enhancement of o-wave scattering transfers to e-wave scattering with the vacancies of Li increased. The energy transformation and transfer efficiency can be also investigated.
[1]. Y. Furukawa, K. Kitamura and S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics”, Opt. Lett. 23 (1998) 1892.
[2]. N. Y. Kamber, G.Y. Zhang, J.J Xu, S.M. Mikha, S. Feng and S.M. Liu, “Measuring phase shift of gratings in codoped Fe, Mg lithium niobate crystals”, Opt. Commun. 178 (2000) 193.
[3]. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim and J.M. Martin, “The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure”, J. Cryst. Growth 211 (2000) 230.
[4]. K. Niwa, Y. Furukawa, S. Takekawa and K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material”, J. Cryst. Growth 208 (2000) 493.
[5]. S.Q. Fang, B. Wang, T. Zhang, F. Ling and Y.Q. Zhao, “Growth and characteristics of near-stoichiometric Zn:LiNbO3 crystals grown by TSSG method”, Mater. Chem. Phys. 89 (2005) 249.
[6]. J.R. Carruthers, G.E. Peterson, M. Grasso and P.M. Bridenbaugh, “Nonstoichiometric and crystal growth of lithium niobate”, J. Appl. Phys. 42 (1971) 1846.
[7]. L.O. Svaasand, M. Eriksrud, G. Nakken, A.P. Grande, “Solid-solution range of LiNbO”, J. Cryst. Growth 22 (1974) 230.
[8]. J.R. Carruthers, G.E. Peterson, M. Grasso and P.M. Bridenbaugh, “Nonstoichiometry and crystal growth of Lithium Niobate”, J. Appl. Phys. 42 (1971) 1846.
[9]. Y.S. Luh, R.S. Feigelson, M.M. Fejer and R.L. Byer, “Ferroelectric domain structures in LiNbO3 single crystal fibers”, J. Cryst. Growth 78 (1986) 135.
[10]. M. Jurisch and W. Loser, “Analysis of periodic nonrotational w-striations in mo single-crystals due to nonsteady thermocapillary convection”, J. Cryst. Growth 102 (1990) 214.
[11]. N.B. Ming, J.F. Hong and D. Feng, ”The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals”, J. Mater. Sci. 17 (1982) 1663.
[12]. J. Chen, Q. Zhou, J.F. Hong, W.S. Wang, N.B. Ming, D. Feng and C.G. Feng, “Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3”, J. Appl. Phys. 66 (1989) 336.
[13]. H.L. Wang, Y. Hang, J. Xu, L.H. Zhang, S.N. Zhu and Y.Y. Zhu, “Near-stoichiometric LiNbO3 crystal grown using the Czochralski method from Li-rich melt”, Mater. Lett. 58 (2004) 3119.
[14]. V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Diéguez, “Effect the crystal composition on the domain structure of LiNbO3 grown from Li-rich melts by the Czochralshi technique”, J. Cryst. Growth 172 (1997) 269.
[15]. L. Xinan, X. Xu, T.C. Chong, S. Yuan, F. Yu and Y.S. Tay, “Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method”, J. Cryst. Growth 260 (2004) 143.
[16]. Y. Chen, W. Zhang, Y. Shu, C. Lou, Y. Kong, Z. Huang, J. Xu and G. Zhang, “Determination of the Li/Nb ratio in LiNbO3 crystals prepared by vapor transport equilibration method”, Opt. Mater. 23 (2003) 295.
[17]. P.F. Bordui, R.G. Normood, D.H. Jundt and M.M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals”, J. Appl. Phys. 71 (1992) 875.
[18]. G. Malovichko, V.G. Grache, L.P. Yurchenko, V.Ya. Proshko, E.P. Kokanyan and V.T. Gabrielyan, ”Improvement of LiNbO3 microstructure by crystal-growth with potassium”, Phys. Status Solidi. A, Appl. Res. 133 (1992) K29.
[19]. M.D. Serrano, V. Bermúdez, L. Arizmendi and E. Diéguez, “Determination of the Li/Nb ratio in LiNbO3 crystal by Czochralski method with K2O added to the melt”, J. Cryst. Growth 210 (2000) 670.
[20]. K. Polgár, Á. Péter and I. Földvéri, “Crystal growth and stoichiometric of LiNbO3 prepared by the flux method”, Opt. Mater. 19 (2002) 7.
[21]. V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Diéguez, “On the single domain nature of stoichiometric LiNbO3 grown from melts containing K2O”, Appl. Phys. Lett. 70 (1997) 10.
[22]. K. Polgár, Á. Péter, I. Földvéri and Z. Szaller, “Structural defects in #ux-grown Stoichiometric LiNbO3 single crystals”, J. Cryst. Growth 218 (2000) 327.
[23]. S. Solanki, T.C. Chong and X. Xu, ” Flux growth and morphology study of stoichiometric lithium niobate crystals”, J. Cryst. Growth 250 (2003) 134.
[24]. K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system”, J. Cryst. Growth 116 (1992) 327.
[25]. D.Q. Ni, W.Y. Wang, D.F. Zhang, X. Wu, X.L. Chen and K.Q. Lu, “Near-stoichiometric LiNbO3 single-crystal growth by metal strip-heated zone melting technique”, J. Cryst. Growth 263 (2004) 421.
[26]. C.Y. Chen, J.C. Chen and Y.J. Lai, “Investigations of the growth mechanism of Stoichiometric LiNbO3 fibers grown by the laser-heated pedestal growth method”, J. Cryst. Growth 275 (2005) e763.
[27]. K. Nagashio, A. Watcharapasorn, R.C. DeMattei and R.S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method”, J. Cryst. Growth 265 (2004) 190.
[28]. R.L. Byer, J.F. Young and R.S. Feigelson, “Growth of high-quality LiNbO3 crystal from the congruent melt”, J. Appl. Phys. 41 (1970) 2320.
[29]. D.A. Bryan, R. Gerson and H.E. Tomaschke, “Increased optical-damage resistance in Lithium-Niobate”, Appl. Phys. Lett 44 (1984) 847.
[30]. S.M. Liu, J.J. Xu, G.Y. Zhang and Y.Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal”, Appl. Opt. 33 (1994) 997.
[31]. T.R. Volk, V.I. Pryalkin, N.M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal”, Opt. Lett. 15 (1990) 996.
[32]. M.L. Hu, C.T. Chia, J.Y. Chang, W.S. Tse and J.T. Yu, “Low-temperature Raman study of zinc-doped lithium niobate crystal powders”, Mater. Chem. Phys. 78 (2002) 358.
[33]. C.T. Chia, M.L. Sun, M.L. Hu, J.Y. Chang, W.S. Tse, Z.P. Yang and H.H. Cheng, “Room-temperature A1(TO) and OH- absorption spectra of Zn-doped Lithium Niobate crystals”, Jpn. J. Appl. Phys. 42 (2003) 6234.
[34]. E. Giulotto, R. DeContardi, F. Rossella and V. Bermúdez, “Relationship between photorefractive activity and Raman scattering in lithium niobate crystals”, Opt. Mater. 27 (2004) 81.
[35]. K. Chen, M.S. Zhang, W.C. Chen, Q. Chen, “Lattice Vibration and Photoinduced Light Scattering in Co-, Cr- and Fe-doped Lithium Niobate”, Prog. Cryst. Growth Charact. Mater. 40 (2000) 43.
[36]. K. Kitamura, Y. Furukawa and Y. Ji, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control”, J. Appl. Phys. 82 (1997) 1006.
[37]. U.B. Ramabadran and H.E. Jackson, “Raman investigation of the nonlinear optical phenomenon of polarization rotation in Ti:LiNbO3 channel waveguides”, J. Appl. Phys. 74 (1003) 1492.
[38]. R.F. Schaufele and M.J. Weber, “Raman scattering by Lithium Niobate”, Phys. Rev. 152 (1966) 705.
[39]. A. Ridah, P. Bourson, M.D. Fontana and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3”, J. Phys. Condens. Matter 9 (1997) 9687.
[40]. I.P. Kaminow and W.D. Johnston, “Quantitative determination of sources of electro-optic effect in LiNbO3 and LiTaO3”, Phys. Rev. 160 (1967) 519.
[41]. A.S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3”, Phys. Rev. 158 (2967) 433.
[42]. R. Claus, G. Borstel, L. Steffan and E. Wiesenda, “Directional dispersion and assignment of optical phonons in LiNbO3”, Zeitschrift fur Naturforschung. A, Astrophysik, Physik und Physikalische Chemie 27(a) (1972) 1187.
[43]. Y. Repelin, E. Husson, F. Bennani and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations”, J. Phys. Chem. Solids 60 (1999) 819.
[44]. M. Veithen and Ph. Ghosez, “First-principles study of the dielectric and dynamical properties of lithium niobate”, Phys. Rev. B 65 (2002) 214302.
[45]. V. Caciuc, A.V. Postnikov and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3”, Phys. Rev. B 61 (2000) 8806.
[46]. K. Parlinski, Z.Q. Li and Y. Kawazoe, “Ab initio calculations of phonons in LiNbO3”, Phys. Rev. B 61 (2000) 272.
[47]. I. Noiret, J. Lefebvre, J. Schamps, F. Delattre, A. Brenier and M. Ferriol, “New structural transformations in congruent ferroelectric LiNbO3 fibres evidenced by Raman spectroscopy”, J. Phys.: Condens. Matter 12 (2000) 2305.
[48]. R. Mouras, S.M. Kostritskii, P. Bourson, M. Aillerie and M.D. Fontana, “Photoinduced Raman scattering in nominally pure lithium niobate crystals”, Opt. Mater. 18 (2001) 127.
[49]. J.C. Chen and C. Hu, “Measurement of the float-zone interface shape for lithium niobate”, J. Cryst. Growth, Vol. 149, pp 87 (1995).
[50]. J. C. Chen and C. Hu, ” Measurement of the surface temperature distribution in the float zone of LiNbO3”, J. Cryst. Growth, Vol. 158, pp 289 (1996).
[51]. G. Malovichko, O. Cerclier, J. Estienne, V. Grachev, E. Kokanyan and C. Boulesteix, “Lattice constants of K- and Mg-doped LiNbO3 comparison with nonstoichiometric Lithiun Niobate ”, J. Phys. Chem. Solids 56 (1995) 1285.
[52]. D. Redfield and W.J. Burke, “Optical absorption edge of LiNbO3”, J. Appl. Phys. 45 (1974) 4566.
[53]. B.C Grabmaier, W. Wersing anf W. Koestler, ”Properties of undoped and MgO-doped LiNbO3 correlation to the defect structure”, J. Cryst. Growth 110 (1991) 339.
[54]. P. Lerner, C. Legras and J.P. Dumas, “Stiechiométrie des monocristaux de métaniobate de Lithium”, J. Cryst. Growth 3/4 (1968) 231.
[55]. A.P. Wilkinson, A.K. Cheetham and R.H. Jarman, ” The defect structure of congruently melting Lithium-Niobate”, J. Appl. Phys. 74 (1993) 3080.
[56]. L.Liang, X.Xuewu, C.T.Chong, Y.Shaoning, Y.Fengliang and T.Y.Soon, “Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method”, J. Cryst. Growth 260 (2004) 143.
[57]. Y. Furukawa, K. Kitamura and S. Takekawa, “Improved properties of stoichiometric LiNbO3 for electro-optical applications”, J. Intell. Mater. Systems Struct. 10 (1999) 470.
[58]. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate”, Appl. Phys. Lett. 70 (1997) 2801.
[59]. M. Wöhlecke, G. Corradi and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals”, Appl. Phys. B 63 (1996) 323.
[60]. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler and M.Wöhlecke, “Determination of the Li/Nb ratio in Lithium Niobate by means of birefringence and Raman measurements”, Appl. Phys. A 56 (1993) 311.
[61]. Y. Zhang, L. Guilbert, P. Bourson, K. Polgár and M.D. Fontana, “Characterization of short-range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy”, J. Phys.: Condens. Matter 18 (2006) 957.
[62]. 汪建民,”材料分析”,中國材料科學學會,p659.
[63]. R.S. Feigelson, Crystal Growth of Electronic Materials, edited by E. Kaldis, Elsevier Science Publishers B.V., 1985. Ch. 11.
[64]. L. Kovács, M. Wöhlecke, A. Jovanović, K. Polgár and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals”, J. Phys. Chem. Sol. 52 (1991) 797.
[65]. N. Iyi, K. Kitamura, F. Izumif, J.K. Yamamoto, T. Hayashi, H. Asano and S. Kimura, “Comparative-study of defect structures in Lithium-Niobate with different compositions”, J. Solid State chem. 101 (1992) 340.
[66]. S. Kojima, “Composition variation of optical phonon damping in Lithium-Niobate crystals”, Jpn. J. Appl. Phys. 32 (1993) 4373.
[67]. J. Blumel, E Born and T. Metzger, “Solid-state NMR-study supporting the vacancy defect model in congruent Lithium-Niobate”, J. Phys. Chem. Solids 55 (1994) 589.
[68]. G.E. Peterson and A. Carneval, “NB-93 NMR Linewidths in nonstoichiometric Lithium-Niobate”, J. Chem. Phys. 56 (1972) 4848.
[69]. S.C. Abrahams and P. Marsh, “Anisotropy in the variation of serially-measured integrated-intensities”, Acta Crystallogr., Sect. A. 43 (1987) 265.
[70]. H. Fay, W.J. Alford and H.M. Dess, “Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition”, Appl. Phys. Lett 12 (1968) 89.
[71]. K.L. Sweeney and L.E. Halliburton, “Oxygen vacancies in Lithium-Niobate”, Appl. Phys. Lett 43 (1983) 336.
[72]. O.F. Schirmer, O. Thiemann and M. Wohlecke, “Defects in LiNbO3 .1. experimental aspects”, J. Phys. Chem. Solids 52 (1991) 185.
[73]. G.G. Deleo, J.L. Dobson, M.F. Masters and L.H. Bonjack, “Electronic-structure of an oxygen vacancy in Lithium-Niobate”, Phys. Rev. B 37 (1988) 8394.
[74]. H. Donnerberg, S.M. Tomlinson, C.R.A. Catlow and O.F. Schirmer, ” Computer-simulation studies of intrinsic defects in LiNbO3 crystals”, Phys. Rev. B 40 (1989) 11909.
[75]. N. Kumada, N. Ozawa, F. Muto and N. Kinomura, “LiNbO3 with ilmenite-type structure prepared via ion-exchange reaction”, J. Solid State Chem. 57 (1985) 267.
[76]. H.J. Donnerberg, S.M. Tomlinson and C.R.A. Catlow, “Defects LiNbO3.2. computer-simulation”, J. Phys. Chem. Solids 52 (1991) 201.