| 研究生: |
謝昭平 Chao-ping Hsieh |
|---|---|
| 論文名稱: |
行動通訊系統之小型化開槽雙頻天線設計 Design of Compact Dual-Band Slot Antennas for Mobile Communication Systems |
| 指導教授: |
丘增杰
Tsen-chieh Chiu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 行波模式 、行動通訊系統 、小型化天線 、開槽天線 |
| 外文關鍵詞: | compact antenna, slot antenna, traveling-wave mode, wifi |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了兩種創新的開槽式天線,兩者都具有可控制阻抗頻寬與共振頻率的饋入電路,第一型式是使用多開槽的小型化雙頻天線,此天線可應用於區域無線網路(WLAN),天線設計為了應用於手持式行動裝置上,天線尺寸大小限制在 10 * 10 mm2 ,並限制天線位置於印刷電路板 (PCB)的角落,此 PCB的大小約為一隻智慧型手機的大小。然而,上述兩種條件都會明顯降低天線頻寬,因此,天線採用了較寬的開槽和多重電流路徑來增加天線頻寬。
第二型式是具有雙饋入的單一開槽雙頻天線,此天線可應用於區域無線網路(WLAN),提出單一開槽的設計方式,最主要的原因是為了避免多開槽之間耦合效應。而本天線一項創新的設計是高頻段的激發電流具有行波模式(Traveling-Wave Mode),除此之外,饋入裝置如何控制中心頻率與頻寬的設計方法都有詳述。
上述提出兩種型式天線的饋入電路都採用匹配電路,此匹配電路可控制阻抗頻寬與天線共振頻率,而且,匹配電路的結構可以使用等效電路原理於電路模擬軟體進行設計。
This dissertation is devoted to the analysis and design of two novel types of slot antennas, both fed by the match circuit. The first type is compact designs of dual-band antennas consisting of multiple slots for WLAN applications. In order to achieve compact and practical designs, the proposed antennas are composed of narrow slots , and placed in the 10 * 10 mm2 corner region of a typical FR4 PCB for WLAN PDA phones. Both strategies have inevitably led to significant bandwidth reduction of the antenna. Therefore, instead of using wide slots to increase the antenna bandwidth, the method of multiple current paths has been adopted.
The second type is a dual-band antenna design using a dual-feed monopole slot for WLAN applications. In the design, only one slot is used in the design, so the mutual-coupling effect often seen in the designs using multiple slots is not of concern. The novelty of the proposed design is that a traveling-wave mode is excited in the upper band. In addition, the tuning mechanisms of the antenna center frequencies and bandwidths are explained in details.
The aforementioned two type are both designed with the matching circuit in fed network. This matching circuit can control impedance bandwidth and resonant frequency. Besides, the structure of the matching circuit can predict by equivalent circuit.
[1] C.A. Balanis, Modern antenna handbook, Wiley, 2008, ch. 23, sec. 23.2.
[2] K. Fijimoto, Mobile antenna system handbook, 3rd ed. Boston, Artech, 2008, ch. 5, sec. 5.1.
[3] Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05), European Telecommunications Standards Institute, Sophia Antipolis Cedex, France, Apr. 1998.
[4] IEEE Std. 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” June 1997.
[5] IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Draft 802.16e/D9, 2005.
[6] R. Li, B. Pan, J. Laskar, and M.M. Tentzeris, “A compact broadband planar antenna for GPS, DCS-1800, IMT-2000, and WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 25–27, 2007.
[7] Y.S. Shin, and S.O. Park, “.A compact loop type antenna for Bluetooth, S-DMB, Wibro, WiMax, and WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 320–323, 2007.
[8] C. R. Rowell, and R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handsets,” IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 837–842, May 1997.
[9] P. Nepa, G. Manara, A. A. Serra, and G. Nenna, “Multiband PIFA for WLAN mobile terminals,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 349–350, 2005.
[10] C. R. Rowell, and R. D. Murch, “A compact PIFA suitable for dual-frequency 900/1800-MHz 0peration,” IEEE Trans. Antennas Propag., vol. 46, no. 4, pp. 596–598, Apr. 1998.
[11] T. Taga, and K. Tsunekawa, “Performance analysis of a built-in planar inverted F antenna for 800 MHz band portable radio units,” in Proc. IEEE Joural on Selected Areas in Commumications., vol. SAC-5, no. 5, pp.921–929, Jun. 1987.
[12] K. Tsunoda, and T. Taga, “Analysis of planar inverted F antenna using spatial network method,” in Proc. IEEE Antennas and Propagation Society Int. Symp., vol. 2, pp.44–47, May 1990.
[13] M.K.Karkkainen, “Meandered multiband PIFA with coplanar parasitic patches,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 10, pp. 630–632, Oct. 2005.
[14] P. Ciais, R. Staraj, G. Kossiavas, and C, Luxey, “Design of an internal quad-band antenna for mobile phones,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 4, pp. 148–150, Apr. 2004.
[15] Y.X. Guo, and H.S. Tan, “New compact six-band internal antenna,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 295–297, 2004.
[16] S. K. Sharma and L. Shafai, “Investigation of wide-band microstrip slot antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 865–872, Mar. 2004.
[17] N. Behdad and K. Sarabandi, “A wide-band slot antenna design employing a fictitious short circuit concept,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 475–482, Jan. 2005.
[18] N. Behdad and K. Sarabandi, “A multiresonant single-element wideband slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 5–8, 2004.
[19] N. Behdad and K. Sarabandi, “A varactor-tuned dual-band slot antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 401–408, Feb. 2006.
[20] S. L. Latif, L. Shafai, and S. K. Sharma, “Bandwidth enhancement and size reduction of microstrip slot antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 994–1002, Mar. 2005.
[21] W. Ren, Z. Shi, Y. Li, and K. Chen, “Compact dual-band T-slot antenna for 2.4/5 GHz wireless applications,” in Proc. Communications, Circuits and System Proceedings, 2006 Inernational Conference., vol. 4, pp.2493–2497, Jun. 2006.
[22] K. L. Wong and L. C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 324–330, Feb. 2009
[23] R. Janaswamy, “Effect of element mutual coupling on the capacity of fixed length linear arrays,” IEEE Antennas Wireless Propag. Lett., vol.1, pp. 157–160, 2002.
[24] B.N. Getu, and R. Janaswamy, “The effect of mutual coupling on the capacity of the MIMO cube,” IEEE Antennas and Wireless Propag Lett., vol. 4, pp. 240–244, 2005.
[25] M.F. Abedin, and M. Ali, “Effects of a smaller unit cellplanar EBG structure on the mutual coupling of a printed dipole array,” IEEE Antennas and Wireless Propag Lett., vol.4, pp. 274-276, 2005.
[26] B.Mohajer-Iravani, S. Shahparnia, and O.M. Ramahi, “ Coupling reduction in enclosures and cavities using electromagnetic band gap structures,” IEEE Trans. Electromagn. Compat.,vol. 48, no. 2, pp. 292–303, May 2006.
[27] T. Heidari, A. Motevasselian, M. Salehi, and A. Tavakoli, “ Mutual coupling reduction of microstrip antennas using defected ground structure, ” IEEE int. Communication Systems Conf., pp. 1–5, Oct. 2006
[28] J. H. Hwang, S. Jung, S. Kang and Y. Kim, “Compact wound-type slot antenna with wide bandwidth,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 11, pp. 569-571, Nov. 2004.
[29] C.I. Lin and K.L. Wong, “Printed monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3690–3697, Dec. 2007.
[30] L. Zhu, R. Fu, and K.L. Wu, “A novel broadband microstrip-fed wide slot antenna with double rejection zeros,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 194–196, 2003.
[31] A. P. Zhao and J. Rahola, “Quarter-wavelength wideband slot antenna for 3–5 GHz mobile applications,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 421–424, 2005.
[32] W. S. Chen, and K. Y. Ku, “Surface-mountable EMC monopole chip antenna for WLAN operation,” IEEE Trans. Antennas Propag., vol.56, no. 4, pp. 1163–1169, Apr. 2008.
[33] C.M. Su, K.L. Wong, C.L. Tang, and S.H. Yeh, “EMC internal patch antenna for UMTS operation in a mobile device,” IEEE Trans. Antennas Propag., vol.53, no. 11, pp. 3836–3839, Nov. 2005.
[34] K.L Wong, Y.C. Lin, and B. Chen, “Internal patch antenna with a thin air-layer substrate for GSM/DCS operation in a PDA phone,” IEEE Trans. Antennas Propag., vol.55, no. 4, pp. 1165–1172, Apr. 2007.
[35] K.L Wong, C.H. Chang, and Y.C. Lin, “Printed PIFA EM compatible with nearby conducting elements,” IEEE Trans. Antennas Propag., vol.55, no. 10, pp. 2919–2922, Oct. 2007.
[36] K.L Wong, and C.H. Chang, “Band-rejected design of the printed open slot antenna for WLAN-WiMAX operation” IEEE Trans. Antennas Propag., vol.54, no. 4, pp. 1100–1104, Apr. 2006.
[37] High Frequency Structure Simulator (HFSS), version 11.0, Ansoft Corporation.
[38] D.M. Pozar, “A reciprocity method of analysis for printed slot,” IEEE Trans. Antennas Propag., vol. ap-34, no.12, pp. 1439–1446, Dec. 1986.
[39] W. Hong, N. Behdad, and K. Sarabandi, “Size reduction of cavity-backed slot antennas,” IEEE Trans. Antennas Propag., vol. 54, no.5, pp. 1461–1466, May 2006.
[40] K. C. Gupta, Microstrip Lines and Slotlines, 2nd ed. Norwood, MA: Artech, 1996, p. 273.
[41] L. Zhu and K. Wu, “Complete circuit model of microstrip-fed slot radiator: Theory and experiments,” IEEE Microwave Guided Wave Lett., vol. 9, no. 8, pp. 305–307, Aug. 1999.
[42] P.L. Sun, H.L. Dai, and C.H. Huang, “Dual band slot antenna with single feed line,” U.S. Patent 6 677 909 B2, Jan. 13, 2004.
[43] R. Bancroft, “Dual slot radiator single feedpoint printed circuit antenna,” U.S. Patent 7 129 902 B2, Oct. 31, 2006.
[44] W. S. Chen, K. Y. Ku, C. H. Lin and K.-L. Wong, “Study of small open slot antenna for broadband operation” In Proc. Proceeding of iWAT2008, pp. 490–493, Mar. 2008.
[45] Agilent PNA Series Network Analyzer User’s and Programming Guide, Agilent Technologies, 2008
[46] P. Y. Lai and K. L. Wong, “Capacitively fed hybrid monopole/slot chip antenna for 2.5/3.5/5.5 GHz Wimax operation in the mobile phone,” Microw. Opt. Technol. Lett., vol. 50, pp.2689–2694, Oct. 2008.
[47] C. J. Wang and S. W. Chang, “A technique of bandwidth enhancement for slot antenna,” IEEE Trans. Antennas Propag.,vol. 56, no. 10, pp. 3321–3324, Oct. 2008.
[48] Advance Design System (ADS), version 2009, Aglient Technologies.
[49] B. Clerckx, D. V. Janvier, C. Oestges and L. Vandendorpe, “Mutual coupling effects on the channel capacity and the space-time processing of MIMO communication systems,” IEEE Communications Conf., vol. 4, pp. 2638-2642, May 2003.
[50] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Transactions on Vehicular Technology, vol. 36, no. 4, pp. 149-172, Nov. 1987.
[51] A.A. Abouda, H.M. El-Sallabi, and S.G. Haggman, “Effect of mutual coupling on BER performance of alamouti scheme,” in Proc. IEEE Antennas and Propagation Society Int. Symp., pp. 4797–4800, 2006.
[52] C. Waldschmidt, J.v. Hagen, W Wiesbeck, “Influence and modelling of mutual coupling in MIMO and diversity systems,” in Proc. IEEE Int. Symp. Antenna and propagation, vol 3, pp.190–193, Jun. 2002.
[53] M.I. Montrose, Print circuit board design techniques for EMC compliance, IEEE press, 1996.
[54] R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1629–1639, Jun. 2003.
[55] T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high-impedance surfaces,” IEEE Microw.Wireless Compon. Lett., vol. 13, no. 1, pp. 21–23, Jan. 2003.
[56] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,”IEEE Trans. Ant. Propagat., vol. 51, pp. 2936–2946, Oct. 2003.
[57] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,” IEEE Microw. Theory Tech., vol. 49, no. 1, pp. 86–93, Jan. 2001.
[58] C.Y Chiu, C.H, Cheng, R.D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements” IEEE Trans. Ant. Propagat., vol. 55, pp. 1732 – 1738, Jun. 2007.
[59] K.J. Kin, W.G. Lim, and J.W. Yu, “ High isolation internal dual-band planar inverted-F antenna diversity system with band-notched slots for MIMO terminals” Microwave Conf., European, pp. 1147-1417, Sep. 2006.
[60] RFANT5220110A2T Data Manual, WLSIN Technology Inc., ROC, 2005.
[61] S.H. Chae, S.K. Oh, and S.O. Park, “Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna,” IEEE Antennas and Wireless Propag Lett., vol. 4, pp. 240-244, 2005.
[62] J. H. Lu and K. L. Wong, “Single-feed dual-frequency equilateral-triangular microstrip antenna with pair of spur lines,” Eletronics. Lett., vol. 34, no. 12, pp 1171-1173, Jun. 1998.
[63] J. H. Lu, H.C. Yu, and K. L. Wong, “Compact circular polarisation design for equilateral-triangular microstrip antenna with spur lines,” Eletronics. Lett., vol. 34, no. 21, pp. 1989-1990, Oct. 1998.
[64] W.H. Tu, and K. Chang, “Compact microstrip bandstop filter using open stub and spurline,” IEEE Antennas and Wireless Propag Lett., vol.5, pp. 268-270, Apr. 2005.
[65] T.C. Edwards and M.B. Steer, Foundations of interconnect and microstrip design, Wiley, 2000.
[66] Z.N. Chen, “ Experiments on input impedance of tilted planar nonople antenna” Microwave Opt Technol Lett., vol. 26, no. 3, pp. 202-204, Aug. 2000.
[67] R.N. Simons, N.I. Dib and L.P.B. Katehi, “Modeling of coplanar stripline discontinuities,” IEEE Trans. Microwave Theory Tech, vol. 44, no. 5, pp. 711 – 716, May 1996.
[68] K. Goverdhanam, R.N. Simons, and L.P.B. Katehi, “Coplanar stripline components for high-frequency applications,” IEEE Trans. Microwave Theory Tech, vol. 45, no. 10, pp. 1725 – 1729, Oct. 1997
[69] Y.H. Suh and K. Chang, “Coplanar stripline resonators modeling and applications to filters,” IEEE Trans. Microwave Theory Tech, vol. 50, no. 5, pp. 1289 – 1296, May 2002.
[70] D.M. Pozar, Microwave engineering, Wiley, 1998.