跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪真一
Chen-Yi Hung
論文名稱: 懸臂式聲波應力感測結構整合至具三維波導光路之矽光學平台
Three-dimensional Optical Path on Silicon Optical Bench with Cantilever Waveguide Sensing Element
指導教授: 張正陽
Jenq-Yang Chang
伍茂仁
Mount-Learn Wu
鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 懸臂式波導振動膜45度反射面
外文關鍵詞: Cantilever Waveguide, Membrane, 45-degree reflector
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出懸臂式聲波應力感測結構整合至具三維波導光路之矽光學平台,其設計之架構,除了結合懸臂式應力感測結構之外,更整合了面射型雷射與光偵測器於此平台上,解決在目前的懸臂式聲波應力感測結構的研究中,光傳輸的部分多用光纖對光纖的問題。
    此架構是製作在SOI(silicon-on-insulator)基板之上,在光子元件層使用非等向性濕蝕刻製作出三維波導光路,更在矽基波導光路中間以半導體製程截斷形成懸臂式波導,最後搭配不同的深蝕刻製程,製作出結合三維波導光路以及聲波應力感測結構之矽基平台。
    本研究之量測結果分為兩個部分,第一,針對製程優化後架構之光學量測,基板厚度為300 µm的架構,光學傳播損耗為-12.168 dB,1 dB下位移容忍度範圍,輸入端的X軸範圍是-4 µm至+5 µm、Z軸為-4 µm至+4 µm,輸出端的X軸是-14 µm至+19 µm、Z軸為-14 µm至+20 µm;第二,是針對懸臂式聲波應力感測結構進行振動位移量之量測,輸入標準音源(1 kHz、10 µs/點),聲音大小有94 dB、100 dB、105 dB以及108 dB,其對應之振動位移結果為,±2 nm、±4 nm、±5.5 nm和±10 nm。本研究成功提供了一個矽基平台以整合光波導以及懸臂式聲波應力感測結構。


    In research area of cantilever sensing element, most of approaches are based on the methodology of fiber-to-fiber coupling, which is unsuitable for the integration of laser source and photodetector (PD) into the platform of cantilever structure. In this thesis, a three-dimensional optical path on silicon optical bench (SiOB) with cantilever waveguide sensing element is proposed for the first time to overcome the bottleneck of laser and PD integration. In the proposed approach, the three-dimensional optical path consists of input 45-degree micro reflector, cantilever waveguide, and output 45-degree micro reflector. A vertical-cavity-surface-emitted-laser (VCSEL) and a PD could be easily integrated into the SiOB by three-dimensional optical path.
    The proposed SiOB is realized on a silicon-on-insulator (SOI) wafer. The three-dimensional optical waveguide is fabricated on the photonic layer of SOI wafer by wet etching process, and the cantilever waveguide is defined by three kind of different deep etching processes.
    The measurement result divides into optics part and vibration part. In the optics part, under the substrate thickness of 300 μm, the optical transmission efficiency is -12.168 dB, and the alignment tolerance of x-axis and z-axis at input port ranges from -4 μm to +5 μm and -4 μm to +4 μm, respectively. At output port, the alignment tolerance of x-axis ranges from -14 μm to +19 μm, and it ranges from -14 μm to +20 μm for z-axis. In the vibration part, considering that the exterior sound source levels at 1 kHz frequency are 94, 100, 105 and 108 dB, the displacement amplitude of cantilever waveguide sensing element are ±2 nm, ±4 nm, ±5.5 nm and ±10 nm, respectively.
    Based on the unique optical bench design, it provides a platform to integrate optical waveguide and cantilever waveguide sensing element, and further possible to integrate laser source and PD.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究動機 2 1-2 聲波應力感測技術之發展現況 5 1-3懸臂式應力感測結構整合至具三維波導光路 8 第二章 懸臂式應力感測波導之設計 10 2-1 三維波導光路之結構設計與模擬 10 2-1-1 調變光波導間距以及頂寬之模擬分析 11 2-1-2 調變光波導深度之模擬分析 13 2-1-3 三維波導光路之結構選用及其模擬分析 15 2-2 聲波應力感測結構之設計與模擬 18 2-3 懸臂式應力感測波導之模擬與分析 24 第三章 懸臂式應力感測波導之製程開發 27 3-1 側壁蝕刻狀況分析 28 3-2 懸臂式應力感測波導之製作流程 29 3-2-1 以KOH製作懸臂式應力感測波導 29 3-2-2 以RIE製作懸臂式應力感測波導 33 3-2-3 以ICP製作懸臂式應力感測波導 35 3-3 製程結果之分析比較 37 第四章 懸臂式應力感測波導之量測分析 38 4-1 不同基板厚度三維波導光路之光學效率量測 38 4-1-1 基板厚度500 m之位移容忍度量測 39 4-1-2 基板厚度300 m之位移容忍度量測 43 4-2 懸臂式應力感測波導之振動位移量測分析 48 第五章 結論與未來展望 55 5-1 結論 55 5-2 未來展望 57 參考文獻 58

    [1] “Optical microphone offers greater sensitivity,” SPIE optics.org, 04 Jul. 2013.
    [2] Lee, W., et al., "Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout." IEEE Journal of Selected Topics in Quantum Electronics 10(3): 643-651, 2004
    [3] Eargle, J., The Microphone Book, 2nd edition, Focal Press, Oxford, 2005.
    [4] Kots, A. and Paritsky A., “Fiber optic microphone for harsh environment”, SPIE, Vol. 3852, pp106-112, 1999.
    [5] Zinoviev, K., et al., “Optical waveguide cantilever actuated by light”. Applied Physics Letters. 92, 2008.
    [6] Nordstrom, M., et al., “SU-8 cantilevers for bio/chemical sensing; Fabrication, characterisation and development of novel read-out methods”, Sensors 8(3): 1595-1612, 2008.
    [7] Pruessner, M. W., et al., “End-coupled optical waveguide MEMS devices in the indium phosphide material system”, Journal of Micromechanics and Microengineering. 16: 832-842, 2006.
    [8] Wang, W. C., et al., “Micromachined optical waveguide cantilever as a resonant optical scanner”, Sensors and Actuators a-Physical 102(1-2): 165-175, 2002.
    [9] Eng, T. T. H., et al., “Surface-Micromachined Epitaxial Silicon Cantilevers as Movable Optical Wave-Guides on Silicon-on-Insulator Substrates”, Sensors and Actuators a-Physical. 49: 109-113, 1995.
    [10] Zinoviev, K., et al., “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces”, Journal of Lightwave Technology. 24: 2132-2138, 2006.
    [11] Lemoff, B. E., et al., “MAUI: Enabling fiber-to-the-processor with parallel multiwavelength optical interconnects”, Journal of Lightwave Technology 22(9): 2043-2054, 2004.
    [12] Wang, F. T., et al., “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects”, Optics Express 17(13): 10514-10521, 2009.
    [13] 張育誠, “微型光學讀取頭之元件,”國立中央大學, 碩士論文, 2003.
    [14] 莊達人, VLSI製造技術, 高立圖書有限公司, 新北市, 2010.

    QR CODE
    :::