跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝欣妤
Hsin-Yu Heish
論文名稱: 等角直線叢的研究
A Study on Equiangular Lines
指導教授: 俞韋亘
Wei-Hsuan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 等角直線
外文關鍵詞: Equiangular Lines
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將會整理離散幾何中一個有趣的領域: 等角直線組(equiangular lines)的歷史演進與發展。以1973年 Lemmens-Seidel 的文章為主體,並加入後續的進展,例如 Barg-Yu 證明了24維度之後的半正定規劃的上界,Lin-Yu 對Neumann定理的推廣, Greaves et al 對於14和16維度決定最大條數的結果。我們整理這些相關文獻,把等角直線組的故事與發展說明得更完整,並且詳細寫下相關的例子或構造。本文以Lemmens-Seidel第四節和第五節為重,第四節說明柱(pillar)是甚麼和相關定理證明,第五節討論當角度固定在arccos(1/5)時,會說明上下界會如何變化。


    This paper dives into an intriguing realm of discrete geometry: the historical evolution and development of equiangular lines. It primarily builds upon the 1973 Lemmens-Seidel paper, incorporating subsequent advancements. For instance, Barg-Yu proved upper bounds for semidefinite programming beyond 24 dimensions, Lin-Yu extended Neumann's theorem, and Greaves et al revealed results on determining the maximum number of lines in 14 and 16 dimensions. We'll organize these relevant works, providing a more comprehensive narrative of the equiangular lines' story and development, while delving into specific examples or constructions. The focus of this paper lies in Lemmens-Seidel's fourth and fifth sections, the fourth section what a "pillar" is and proves associated theorems, while the fifth section how upper and lower bounds shift when the angle is fixed at arccos(1/5).

    摘要 第ix頁 Abstract 第xi頁 目錄 第xiii頁 一、 緒論 第1頁 二、 定義跟例子 第5頁 三、 最大等角直線數的上下界 第11頁 四、 柱 第23頁 五、 v_{1/5}(r)的測定 (determination) 第33頁 六、 結論 第45頁 參考文獻 第51頁

    1] P. W. Lemmens and J. J.Seidel, “Equiangular lines,” Journal of Algebra, vol. 24,
    no. 3, pp. 494–512, 1973.
    [2] A. Barg and W.-H. Yu, “New bounds for equiangular lines.,” Discrete geometry and
    algebraic combinatorics, vol. 625, pp. 111–121, 2013.
    [3] Y.-C. R. Lin and W.-H. Yu, “Equiangular lines and the lemmens–seidel conjecture,”
    Discrete Mathematics, vol. 343, no. 2, p. 111667, 2020.
    [4] G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi, “Equiangular lines in
    euclidean spaces,” Journal of Combinatorial Theory, Series A, vol. 138, pp. 208–
    235, 2016.
    [5] J. Haantjes, “Equilateral point-sets in elliptic two-and three-dimensional spaces,”
    Nieuw Arch. Wiskunde (2), vol. 22, pp. 355–362, 1948.
    [6] J. H. van Lint and J. J. Seidel, “Equilateral point sets in elliptic geometry,” Pro-
    ceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A:
    Mathematical Sciences, vol. 69, no. 3, pp. 335–348, 1966.
    [7] D. de Caen, “Large equiangular sets of lines in euclidean space,” the electronic journal
    of combinatorics, vol. 7, pp. R55–R55, 2000.
    [8] Y.-c. R. Lin and W.-H. Yu, “Saturated configuration and new large construction of
    equiangular lines,” Linear Algebra and its Applications, vol. 588, pp. 272–281, 2020.
    [9] G. Greaves, J. Syatriadi, and P. Yatsyna, “Equiangular lines in euclidean spaces:
    dimensions 17 and 18,” Mathematics of Computation, vol. 92, no. 342, pp. 1867–
    1903, 2023.
    [10] J. C. Tremain, “Concrete constructions of real equiangular line sets,” arXiv preprint
    arXiv:0811.2779, 2008.
    [11] P. Delsarte, J. Goethals, and J. J. Seidel, “Orthogonal matrices with zero diagonal.
    ii,” Canadian Journal of Mathematics, vol. 23, no. 5, pp. 816–832, 1971.
    [12] M.-Y. Cao, J. H. Koolen, Y.-C. R. Lin, and W.-H. Yu, “The lemmens-seidel conjec-
    ture and forbidden subgraphs,” Journal of Combinatorial Theory, Series A, vol. 185,
    p. 105538, 2022.
    [13] G. Greaves and P. Yatsyna, “On equiangular lines in 17 dimensions and the charac-
    teristic polynomial of a seidel matrix,” Mathematics of Computation, vol. 88, no. 320,
    pp. 3041–3061, 2019.
    [14] G. R. Greaves, J. Syatriadi, and P. Yatsyna, “Equiangular lines in low dimensional
    euclidean spaces,” Combinatorica, vol. 41, no. 6, pp. 839–872, 2021.
    [15] G. R. Greaves and J. Syatriadi, “Real equiangular lines in dimension 18
    and the de caen-jacobi identity for complementary subgraphs,” arXiv preprint
    arXiv:2206.04267, 2022.
    [16] I. Balla, “Equiangular lines via matrix projection,” arXiv preprint arXiv:2110.15842,
    vol. 3, no. 4, p. 6, 2021.

    QR CODE
    :::