跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王芊茹
Chian-Ju Wang
論文名稱: 非晶矽薄膜製程於電子迴旋共振氣相沉積之電漿診斷研究
Plasma diagnostics study of hydrogenated amorphous silicon thin film process by electron cyclotron resonance chemical vapor deposition
指導教授: 利定東
Tomi T. Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 電漿診斷氫化非晶矽薄膜四極柱質譜儀光放射光譜儀蘭牟爾探針
外文關鍵詞: Plasma diagnostics, hydrogenated amorphous silicon, QMS, OES, Langmuir probe
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用光放射光譜儀(OES)監測電漿物種變化,蘭牟爾探針(Langmuir probe)監測電漿特性,四極柱質譜儀(QMS)監測物種濃度,於電子迴旋共振化學氣相沉積製備非晶矽薄膜之製程。調變的參數為微波功率、壓力、磁場共振位置、氫稀釋濃度比並輔以FTIR、Detek來探討薄膜的結構特性,以少數載子生命週期和微結構因子判斷薄膜品質的好壞。最後將電漿特性與薄膜特性相互比較,以期建構電漿診斷平台。
    經由實驗可得,考慮到電子密度及電子溫度的影響因此製程壓力選用5mTorr最為恰當;至於功率可選用低功率500W;綜合以上參數,可於磁場組態40/12/22、氫稀釋比0.2、厚度20nm下獲得品質穩定的非晶矽鈍化薄膜。
    本研究成功整合了OES、Langmuir probe、QMS,將SiH4消耗量、表面懸吊鍵數量作為預測薄膜沉積速率指標,使用SiH2/SiH3為薄膜品質之指標並將Si*/SiH*作為電子溫度指標。最後,以沉積非晶矽薄膜為例,解析ECR電漿沉膜機制。並可利用此結論,在尚未成長薄膜前,就先行營造出有利成長良好特性的薄膜生長環境,藉此減少製程之試誤時間。


    In this study, OES (Optical emission spectrometer), Langmuir probe, and QMS (Quadrupole mass spectrometer) were utilized as plasma diagnostics tools and a-Si:H (Hydrogenated amorphous silicon ) thin film was deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD). QMS and OES were used to identify active species in the plasma. Electron density, electron temperature and the energy of ion bombardment were obtained by Langmuir probe. The film quality such as microstructure fraction (R*), hydrogen content (CH), deposition rate, and lifetime were investigated by FT-IR and Detak. The relationship between the film quality and plasma characteristics with varying process parameters (microwave power, working pressure, magnetic field resonance position, and dilution ratio) was discussed.
    The result showed that high microwave power and high hydrogen flow rate injected would lead to higher electron temperature and more SiH2 generated in the plasma. Higher process pressure caused lower electron density and lower electron temperature. Therefore thin film with a low defect would be deposited by dilution ratio of 0.2, microwave power of 500W, working pressure of 5mTorr and the magnetic field configuration of 40A, 12A and 22A represented main coil, inner coil and outer coil current respectively.
    Consequently, we successfully demonstrate the mechanism of plasma in a-Si:H process and have some findings in which the consumption of SiH4 and the amount of dangling bond on the surface could be regarded as an indicator of deposition rate in a-Si:H process and the ratio of SiH2 to SiH3 from QMS could be considered as an indicator of film quality for microstructure fraction (R*) in films. Si*/SiH* from OES could be treated as an indicator for electron temperature in transport. 

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xi 一、緒論 1 1-1 前言 1 1-2 研究動機及目的 3 二、文獻整理與基本回顧 4 2-1 電漿簡介 4 2-1-1 電漿原理 4 2-1-2 電漿特性 7 2-1-3 電子迴旋共振電漿 8 2-3 薄膜沉積 10 2-3-1 薄膜沉積原理 10 2-3-2 化學氣相沉積(CVD) 12 2-3 氫化非晶矽薄膜(α-Si:H) 14 2-4 電漿診斷系統 18 2-4-1 光放射光譜儀 18 2-4-2 蘭牟爾探針 19 2-4-3 四極柱質譜儀(QMS) 19 三、實驗方法與設備 22 3-1 實驗流程 22 3-2 實驗步驟 23 3-2-1 參數設定 23 3-2-2 實驗流程 24 3-3 實驗設備及原理 25 3-3-1 電子迴旋共振氣相沉積系統(ECR-CVD) 25 3-3-2 光放射光譜儀OES 28 3-3-3 Langmuir probe 30 3-3-4 四極柱質譜儀 32 3-3-5 傅氏轉換紅外線光譜儀(FTIR) 33 3-3-6 表面輪廓儀(Detek) 35 四、結果與討論 37 4-1 功率 39 4-1-1 功率對沉積速率的影響 39 4-1-2 功率對電子密度與溫度的影響 40 4-1-3 功率對薄膜品質的影響 41 4-2 工作壓力 43 4-2-1 工作壓力對沉積速率的影響 43 4-2-2 工作壓力對電子密度與溫度的影響 44 4-2-3 工作壓力對薄膜品質的影響 47 4-3 磁場共振位置 49 4-3-1 磁場共振位置對沉積速率的影響 50 4-3-2 磁場共振位置對電子密度與溫度的影響 51 4-3-3 磁場共振位置對薄膜品質的影響 54 4-4 氫稀釋比 55 4-4-1氫稀釋比對沉積速率的影響 55 4-4-2 氫稀釋比對電子密度與溫度的影響 56 4-4-3 氫稀釋比對薄膜品質的影響 59 五、結論 60 參考文獻 61

    [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
    [2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
    [3]K. Arima, T. Shigetoshi, H. Kakiuchi, and M. Morita, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp. 893–896, 2006.
    [4]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
    [5]蕭宏,半導體製程技術導論 修訂版,羅正忠,台北市,台灣培生教育,民國98年。
    [6]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
    [7]I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
    [8]Wiki:http://zh.wikipedia.org/zh-tw/%E7%A3%81%E5%A0%B4
    [9]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
    [10]J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
    [11] H. Fritzsche, M. Tanielian, C. C. Tsai, and P. J. Gaczi., “Hydrogen content and density of plasma‐deposited amorphous silicon‐hydrogen”, J. Appl. Phys., Vol. 50, pp. 3366- 3370, 1979.
    [12]J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon”, J. Appl. Phys. Vol. 87, pp. 2608-2617, 2000.
    [13]葉志鎮,半導體薄膜技術與物理,浙江大學出版社,2008年。
    [14]張濟忠,現代薄膜技術,冶金工業出版社,2009年。
    [15]王增福,實用鍍膜技術,電子工業出版社,2008年。
    [16] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells , Vol.78, pp.3-26, 2003.
    [17]A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
    [18]Y. Ruohe, L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, Journal of Shantou University, Vol. 13, pp. 16- 19, 1997.
    [19] M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
    [20]M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
    [21]Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azumab, H. Shirai, “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
    [22]A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials & Solar Cells, Vol 78, pp. 3–26, 2003.
    [23]P. Kumar, F. Zhu, and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
    [24]K. Saito, and M. Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, pp. 535–538, 2010.
    [25]S. K. Ram, L. Kroely, S. Kasouit, P. Bulkin, and P. Roca , “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi, Vol 7, pp. 553–556, 2010.
    [26]H. M. Mott-Smith and I. Langmuir, “The Theory of Collectors in Gaseous Discharges”, Physical Review, Vol. 28, pp. 727-763, 1926.
    [27] L. Latrasse , N. Sadeghi , A. Lacoste , A. Bes and J. Pelletier, “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
    [28] Q. Wang, D. Ba, J. Feng, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”. Plasma Sci. Technol, Vol. 10,pp. 727, 2008
    [29] Y. Kawai, K. Uchinoa, H. Mutaa, S. Kawai, and T. Röwfc. “Development of large diameter ECR plasma source”, Vacuum, Vol 84, pp. 1381–1384, 2010.
    [30] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, Journal Of Physics D: Applied Physics., Vol. 42, No.3, 2008.
    [31] R.K. Janev and D. Reiter, “Collision processes of Hydride species in Hydrogen plasmas: III. The Silane family”, Contrib. Plasma Phys., Vol. 43, pp. 401-417, 2003.
    [32] P. Horváth,“Mass spectroscopic and optical studies of radiofrequency SiH4 and H2-SiH4 plasmas”,Roland Eötvös University,PhD,2007.
    [33] M. Goto, H. Toyoda, M. Kitagawa, T. Hirao, and H.Sugai, “low temperature growth of amorphous and polycrystalline silicon films from a modified inductively coupled plasma”, Jpn. J. Appl. Phys., Vol. 36, pp. 3714~3720, 1997.
    [34] S. Xu, X. Zhang, Y.Li, S. Xiong, X. Geng, and Y. Zhao, “Improve silane utilization for silicon thin film deposition at high rate”, Thin Solid Film, Vol. 520, pp. 694-696, 2011.
    [35] T. Moiseev, D. Chrastina, and G. Isella, “Plasma Composition by Mass Spectrometry in a Ar-SiH4-H2 LEPECVD Process During nc-Si Deposition”, Plasma Chem. Plasma Process, Vol. 31, pp. 154-174, 2011.
    [36] D. C. Marra, W. M. M. Kessels, M. C. M. van de Sanden, K. Kashefizadeh , and E. S. Aydila, “In situ infrared study of the role of ion flux and substrate temperature on a-Si:H surface composition”, J. Vac. Sci. Technol. A., Vol. 20, pp. 781-793, 2002.
    [37] W. M. M. Kessels, M. C. M. van de Sanden, and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A., Vol. 18, pp. 2153- 2166, 2000.
    [38] W. M. M. Kessels, M. G. H. Boogaarts, J. P. M. Hoefnagels, M. C. M. van de Sanden, and D. C. Schram,“Improvement of hydrogenated amorphous silicon properties with increasing contribution of SiH3 to film growth”, J. Vac. Sci. Technol. A., Vol. 19, pp. 1007- 1011, 2001.
    [39] W. M. M. Kessels, C. M. Leewis, M. C. M. van de Sanden, and
    D. C. Schram,“Formation of cationic silicon clusters in a remote silane plasma and their contribution to hydrogenated amorphous silicon film growth”, J. Vac. Sci. Technol. A., Vol. 17, pp. 1531- 1545, 1999.
    [40] S. E. Lassig and J. D. Tucker, “Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD)”, Microelectronics Journal, Vol. 26, pp. 8-22, 1995.
    [41] P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J.
    Desmaison, and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum
    Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films,
    Vol 390, pp. 51–58, 2001.
    [42] A. Francis, U. Czarnetzki, H. F. Döbele, and N. Sadeghi, “Quenching of the
    750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”,Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
    [43]潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之
    應用」,私立中原大學,碩士論文 ,2008年。
    [44] M. Wakaki, K. kudo and T. Shibuya,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳,化學工業出版社,2010年。
    [45] Hiden PSM操作手冊。
    [46] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, “Amorphous silicon solar cells deposited at high growth rate”,Journal Non-Crystalline Solids, Vol. 299, pp. 1116–1122, 2002.
    [47] S. Guha, J. Yang, Scott J. Jones, Y. Chan and D.L. Williamson, “Effect of
    microvoids on initial and lightdegraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444, 1992.
    [48]彭永福,以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料,2009。

    QR CODE
    :::