| 研究生: |
許捷翔 Chieh-Hsiang Hsu |
|---|---|
| 論文名稱: |
利用陽極氧化鋁薄膜在矽太陽能電池表面製做抗反射奈米結構 Anti-reflective Structures for Silicon Solar Cell Fabricated Using Anodic Aluminum Oxide Method |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 有限時域差分法 、抗反射結構 、陽極氧化鋁 |
| 外文關鍵詞: | Anodic Aluminum Oxide, Anti-reflective Structures, finite difference time domain method |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用蛾眼效應,藉由多孔陽極氧化鋁蝕刻遮罩,在矽基板上製作出抗反射蛾眼結構。首先,我們先利用有限時域差分法設計出週期為200nm之奈米孔洞陣列作為蝕刻遮罩。然後,我們在矽基板表面製備多孔陽極氧化鋁奈米孔洞陣列薄膜,多孔陽極氧化鋁有著製做成本低廉,製程簡單、快速,以及容易大面積製作等優點。接著,我們利用高密度電漿蝕刻並通以SF6氣體,蝕刻矽基板表面。最後,我們在矽基板上製作出週期為220nm之奈米孔洞陣列抗反射結構。從實驗結果得知,當我們結構柱高高於500nm時,其反射率可低於1%,在我們製作的樣品中,反射率最好可低至0.58%,而當光源從60度入射時,反射率可低至3.01%。此外,我們也利用原子層沉積法,在結構表面鍍製ZnO薄膜,進一步地降低反射率。由模擬結果得知,當厚度達60nm時,有最佳優化抗反射之特性。我們最後讓一反射率為2.54%之樣品,在鍍製58nm之ZnO後,反射率降至0.83%。我們將抗反射結構應用於太陽能電池上,並將效率從4.311%提升至5.06%。
In this study, we fabricated anti-reflection structure on silicon by using anodic aluminum oxide nanostructure as an etching mask inspired by moth eye effect. At first, we employed FDTD simulation to design the mask which is a nano-channel array with the period of 200nm. Then, anodic porous alumina membrane was used as the etching mask on silicon surface. Anodic porous alumina is a self-aligned structure with a submicron scale and easily formed by the anodic oxidation of Al over a large area and at low cost. After that the silicon was etched by high density plasma with SF6 gas. Finally, the anti-reflection nano-hole array structure with 220nm period was formed. The experiment results showed a low reflectivity below 1% was achieved over a wide spectral bandwidth from 400 to 1000 nm when nano-cone over 500nm. The best reflectivity can reach to 0.58% at normal incidence. When the angle of incidence is 60 degree, the best reflectivity can reach to 3.01%. In addition, an antireflection coating of ZnO film was deposited on the nanostructure using atomic layer deposition process to reduce surface reflection. According to our simulation result, a 60-nm thickness of ZnO is the best antireflection design. As a result, the average reflectance of the nanostructure with a single layer of ZnO can be decreased from 2.54% to 0.83%. Finally, the efficiency of the solar cell can increase from 4.31% to 5.06% by using the antireflection structure.
[1] Available: http://www.moeaboe.gov.tw/
[2] 林明獻,《太陽電池技術入門》,全華圖書股份有限公司,台北,第一版,2007。
[3] 陳柏丞,《非(微)晶矽薄膜太陽能電池之能矽結構研究》,碩士論文,國立中央大學光電科學與工程學系,民100年6月。
[4] 李正中,《薄膜光學與鍍膜技術》,藝軒圖書出版社,台北,第六版,2009。
[5] Available: http://en.wikipedia.org/wiki/Alexander_Smakula
[6] Available: http://en.wikipedia.org/wiki/Anti-reflective_coating
[7] Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K., "Light on the moth-eye corneal nipple array of butterflies,"Proceedings of the Royal Society B-Biological Sciences, 273(1587), 661-667 (2006).
[8] Gangopadhyay, U., Kim, K., Dhungel, S. K., Basu, P. K., & Yi, J., "Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use," Renewable Energy 31(12), 1906-1915 (2006).
[9] Wang, S., Yu, X. Z., & Fan, H. T., "Simple lithographic approach for subwavelength structure antireflection," Applied Physics Letters 91(6), (2007).
[10] Kuo, M. L., Poxson, D. J., Kim, Y. S., Mont, F. W., Kim, L. K., Schuhert, E. F., et al, "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Optics Letters 33(21), 2527-2529 (2008).
[11] Xu, H. B., Lu, N., Qi, D. P., Hao, J. Y., Gao, L. G., Zhang, B., et al., "Biomimetic Antireflective Si Nanopillar Arrays," Small 4(11), 1972-1975 (2008).
[12] Chen, Q., Hubbard, G., Shields, P. A., Liu, C., Allsopp, D. W. E., Wang, W. N., et al., "Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting," Applied Physics Letters 94(26), (2009).
[13] Leem, J. W., Song, Y. M., Lee, Y. T., & Yu, J. S., "Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications," Applied Physics B-Lasers and Optics 100(4), 891-896 (2010).
[14] Chen, S. H., Tseng, S. Z., Chen, W., Cho, W. H., & Chan, C. H., "Wide-angle antireflection ZnO films on bullet-like nanostructures of multi-crystalline silicon," Journal of Vacuum Science & Technology A, 30(1) , (2012).
[15] Thompson, G. E., "Porous anodic alumina: Fabrication, characterization and applications," Thin Solid Films, 297(1-2), 192-201 (1997).
[16] Jessensky, O., Muller, F., & Gosele, U., "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, 72(10), 1173-1175 (1998).
[17] 章詠湟,《利用原子層沉積與陽極氧化鋁膜製備一維二氧化鈦奈米結構陣列及其光學特性研究》,博士論文,國立交通大學材料科學與工程學系,民99年12月。
[18] Keller, F., Hunter, M. S., & Robinson, D. L., "Structural Features of Oxide Coatings on Aluminum," Journal of The Electrochemical Society, 100(9), 411-419 (1953).
[19] O''Sullivan, J. P., & Wood, G. C., "The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 317(1531), 511-543 (1970).
[20] Scully, J. C., & Herman, H., "Corrosion: aqueous processes and passive films," Vol. Treatise on materials science and technology New York: Academic Press (1983).
[21] Parkhutik, V. P., & Shershulsky, V. I., "Theoretical modelling of porous oxide growth on aluminium," Journal of Physics D-Applied Physics, 25(8), 1258-1263 (1992).
[22] Masuda, H., & Fukuda, K., "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268(5216), 1466-1468 (1995).
[23] Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, 84(11), 6023-6026 (1998).
[24] Masuda, H., Yotsuya, M., Asano, M., Nishio, K., Nakao, M., Yokoo, A., et al., "Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina," Applied Physics Letters, 78(6), 826-828 (2001).
[25] Zhao, N. Q., Jiang, X. X., Shi, C. S., Li, J. J., Zhao, Z. G., & Du, X. W., "Effects of anodizing conditions on anodic alumina structure," Journal of Materials Science, 42(11), 3878-3882 (2007).
[26] Yee, K. S, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Trans. Antennas Propagat, 14, 302-307 (1966).
[27] 陳煒,《用奈米小球微影法製作多晶矽太陽能電池表面結構》,碩士論文,國立中央大學光電科學與工程學系,民100年6月。
[28] 王淳弘,《自我複製式偏振分光鏡製作與誤差分析》,碩士論文,國立中央大學光電科學與工程學系,民99年6月。
[29] 陳映羽,《以自我複製技術設計及製作低損耗型波導》,碩士論文,國立中央大學光電科學與工程學系,民101年3月。
[30] 欒丕綱、陳啟昌,《光子晶體-從蝴蝶翅膀到奈米光子學》,五南圖書出版社,臺北市,第二版,2010。
[31] 張勁燕,《半導體製程設備》,五南圖書出版社,臺北市,第四版,2000。
[32] Leskela, M., & Ritala, M, "Atomic layer deposition chemistry: Recent developments and future challenges", Angewandte Chemie-International Edition, 42(45), 5548-5554 (2003).