跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張永欣
Yung-hsin Chang
論文名稱: 砂土中模型樁之減振與摩擦特性
指導教授: 張惠文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 167
中文關鍵詞: 模型樁減振器摩擦樁加速度永久沉陷量
外文關鍵詞: model pile, vibration damper, friction pile, acceleration, permanent settlement
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以消能為出發點,進行一系列的模型樁摩擦試驗,提出一種改良基樁的方式,藉由減振器的功能,降低受衝擊的基樁和樁周土壤之振動及永久性沉陷。如摩擦樁下方無承載層,其支承力幾乎全由樁身摩擦力所提供,當受到之衝擊力大於樁身摩擦阻抗時,便會產生永久性沉陷。本研究以摩擦樁為研究對象,探討加裝減振器後,其振動與沉陷量的減少情況。試驗採用一圓筒狀鋼製土槽,中央架設模型樁,下方套有一空心套管,使模型樁無任何點承力支撐,並以峴港砂土試體模擬現地情況,將落錘以四種落距對模型樁進行衝擊加載,以加速度計量測模型樁周遭土壤各深度的最大加速度,並以LVDT量測減振器的動態變位量及模型樁的永久沉陷量,最後透過數據比較未改良模型樁與改良模型樁之差異。由試驗結果可以得知,加裝液壓減振器,確實能吸收振動能量,降低樁身永久沉陷量,但也因此使得摩擦消能之作用未完全發揮,故產生液壓減振改良模型樁之樁周土壤加速度仍略大於未改良模型樁之情況。


    This study set a vibration damper on pile head to reduce shock vibration and permanent settlement of model pile caused by impact loading. If there is no bearing stratum under the tip of pile, the bearing capacity of pile will be completely supported by shaft friction. When the impact force is greater than the frictional resistance of pile foundation, some permanent settlement will be caused. This study chose the friction pile as the research object, and investigated its situation of vibration and settlement reduction with vibration damper. The test used a hollow tube under the model pile to remove the bearing capacity of model pile. Danang sand was used to fabricate test specimens. The drop hammer was used to impact the model pile with some different drop heights. Accelerometers and LVDT were used to measure the data of acceleration, dynamic displacement of vibration damper and permanent settlement of model pile. According to the test results, the vibration of the model pile with hydraulic damper is larger than the untreated one, but the target of reducing permanent settlement of model pile is achieved. From the viewpoint of energy, the vibration damper absorbed the impact energy indeed and reduced the permanent settlement of model pile.

    摘要 I Abstract II 目錄 III 照片目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法 2 1.4 論文內容 2 第二章 文獻回顧 4 2.1 基樁之相關理論 4 2.1.1 基樁之設計原則 4 2.1.2 基樁之極限支承力理論 5 2.1.3 基樁之沉陷特性 6 2.1.4 基樁支承力與沉陷量之關係 8 2.1.5 樁-土介面之承載機制 10 2.1.6 振波在土壤中傳遞之行為 11 2.1.7 基樁受瞬間衝擊引致之振動 12 2.2 樁身摩擦特性 14 2.3 砂土之支承與受振特性 16 2.3.1 砂土之支承能力 16 2.3.2 砂土受振之行為 17 2.4 交通工具行駛造成之振動 18 2.5 容許沉陷量之相關規範 19 2.5.1 容許角變量 19 2.5.2 容許沉陷量 20 2.6 消能元件之力學特性 20 2.7 基樁減振之研究 22 第三章 試驗器材與方法 48 3.1 試驗方法 48 3.2 試驗土樣 49 3.3 試驗設備與配置 49 3.3.1 LVDT之校正方法 52 3.3.2 減振器之製作方法 53 3.3.3 設備配置 54 3.4 試體製作 54 3.4.1 霣降法之標定試驗與應用 55 3.4.2 乾搗法 56 3.5 摩擦試驗 57 第四章 試驗結果與分析 75 4.1 未改良模型樁之受振特性 75 4.2 改良模型樁之受振特性 76 4.3 減振器對振動之改良成效 77 4.4 模型樁受振之沉陷特性 78 4.5 減振器對樁身永久沉陷之改良成效 82 4.6 減振器之動態變位量 83 第五章 結論與建議 102 5.1 結論 102 5.2 建議 103 參考文獻 104 附錄 111

    1. 土質工學會,土質試驗法,日本土質工學會,第76-78頁,第172-188頁 (1976)。
    2. 公路橋梁設計規範,交通部公路總局,台北 (2011)。
    3. 王偉輝、許榮均,「陸上運輸系統噪音、振動抽測」,行政院環境保護署委託研究計畫成果報告,第113-114頁 (2010)。
    4. 古翰,「基樁減振器空氣填充度之減振特性與變形特性」,碩士論文,國立中央大學土木工程學系,中壢 (2012)。
    5. 林思銘,「基樁之減振改良研究」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
    6. 林筠原,「減振基樁之瞬間變形與減振效果」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
    7. 建築物基礎構造設計規範,內政部營建署,台北 (2012)。
    8. 施國欽,大地工程學(二)基礎工程篇,文笙書局,台北 (2010)。
    9. 倪勝火、莊明仁、鐘啟泰,「台南科學園區背景及相關振源量測與分析」,第20屆中日工程技術研討會,公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,第113-129頁 (1999)。
    10. 張國鎮、黃正興、張晴茂、李森枬,結構消能減震控制及隔震設計,全華書局,台北 (2008)。
    11. 陳斗生,「樁基礎之沉陷問題淺論」,地工技術,第101卷,第67-78頁 (2004)。
    12. 陳怡云,「場鑄基樁軸向承載行為及性能設計應用之研究」,碩士論文,國立臺灣科技大學營建工程系,台北 (2012)。
    13. 陳政昇,「基樁之減振與沉陷特性」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
    14. 曾乙哲,「複合勁度減振彈簧對砂土中模型樁動態性質之影響」,碩士論文,國立中央大學土木工程學系,中壢 (2006)。
    15. 游以民,「減振基樁與樁周土壤之振波傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢 (2005)。
    16. 廖文彬,「由模型樁試驗探討砂土層中軸向基樁摩擦行為」,碩士論文,國立臺灣科技大學營建工程系,台北 (1999)。
    17. 歐韋麟,「砂土中減振模型基樁之動態性質」,碩士論文,國立中央大學土木工程學系,中壢 (2007)。
    18. 蔡瑋育,「高鐵列車行經南科園區引致環境振動之分析」,碩士論文,國立成功大學土木工程學系,台南 (2009)。
    19. 鐵路橋梁設計規範,交通部臺灣鐵路管理局,台北 (2004)。
    20. 鹽田正純,「地盤內の振動傳搬特性(<小特集>建築分野における固体音制御への流れ)」,日本音響學會誌,第五十卷,第四期,第325-331 頁 (1994)。
    21. Athanasopoulos, G.A., Pelekis, P.C., and Anagnostopoulos, G.A., “Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 4, pp. 277-288 (2000).
    22. Attewell, P.B., and Farmer, I.W., “Attenuation of ground vibrations from pile driving,” Ground Engineering, Vol. 6, No. 4, pp. 9-26 (1973).
    23. Bjerrum, L., “Allowable settlement of structures,” Proceedings of the 6th European Conference on Soil Mechanics and Foundation Engineering, Weisbaden, Germany, Vol. 3, pp. 135-137 (1963).
    24. Chehab, A.G., and El Naggar, M.H., “Design of efficient base isolation for hammers and presses,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 2, pp. 127-141 (2003).
    25. Coyle, H.M., and Reese, L.C., “Load transfer for axially loaded piles in clay,” Journal of the soil Mechanics and Foundation Division, Vol. 92, No. 2, pp. 1-26 (1966).
    26. Coyle, H.M., and Sulaiman, I.H., “Skin friction for steel piles in sand,” Journal of Soil Mechanics and Foundation Division, Vol. 93, No. 6, pp. 261-278 (1967).
    27. Das, B.M., Principles of Geotechnical Engineering, Cengage Learning, U.S.A., pp. 641 (2010).
    28. Ewing, W.M., Jardetzky, W. S., and Press, P., “Elastic waves in layered media, ” McGraw-Hill, New York, pp. 380 (1957).
    29. Fioravante, V., “On the shaft friction modelling of non-displacement piles in sand,” Soils and Foundations, JGS, Vol. 42, No. 2, pp. 23-33 (2002).
    30. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 115-126 (2000).
    31. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall International Series in civil Engineering Mechanics, Upper Saddle River, New Jersey, pp. 174-180 (1996).
    32. Li, Y., and Qiang, S., “Dynamics of wind-rail vehicle-bridge systems,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, Issue. 6, pp. 483-507 (2005).
    33. Miller, G.F., and Pursey, H., "On the partitioning of energy between elastic waves in a semi-infinite solid," Proceedings of the Royal Society of London, London, U.K., Series A 233, pp. 55-69 (1955).
    34. Nowak, E.R., Knight, J.B., Povinelli, M.L., Jaeger, H.M., and Nagel, S.R., “Reversibility and irreversibility in the packing of vibrated granular material,” Powder Technology, Vol. 94, pp. 79-83 (1997).
    35. O’Rourke, T.D., and Kulhawy, F.H., “Observations on load tests on drilled shafts,” Drilled Piers and Caissons II, New York, pp. 113-128(1985).
    36. Parry, R.H., and Swain, C.W., “Effective stress method of calculating skin friction on driven piles in soft clay,” Ground Engineering, Vol. 4, pp. 24-26 (1977).
    37. Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, Wiley, New York, pp. 125 (1980).
    38. Randolph, M.F., and Wroth, C.P., “Application of the failure state in undrained simple shear to the shaft capacity of driven piles,” Géotechnique, Vol. 31, No. 1, pp. 143-157 (1981).
    39. Randolph, M.F., and Wroth, C.P., “Analysis of deformation of vertically loaded piles,” Journal of the Geotechnical Engineering Division, Vol. 104, No. 12, pp. 1465-1488 (1978).
    40. Richart, D.W., “Dynamic effect of pile installations on adjacent structures,” NCHRP Synthesis Report 253, Washington, U.S.A. (1997).
    41. Seed, H.B., and Reese, L.C., “The action of soft clay along friction piles,” Transaction of ASCE, Vol. 122, No. 2882, pp. 731-764 (1957).
    42. Terzaghi, K., Theoretical Soil Mechanics, John Wiley and Sons, New York (1943).
    43. Theissen, J.R., and Wood, W.C., “Vibration in structures adjacent to pile driving,” Dames and Moore Engineering, Bulletin, No. 60, pp. 4-21 (1982).
    44. Tomlinson, M.J., “Some Effects of pile driving on skin friction,” Proceedings of the Conference on Behavior of Piles, London, U.K., pp. 107-114 (1971).
    45. Verhas, H.P., “Prediction of the propagation of train-induced ground vibration,” Journal of Sound and Vibration, Vol. 66, pp. 371-376 (1979).
    46. Vesic, A.S., Design of pile foundation, Synthesis of Highway Practice 42, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington D.C. (1977).
    47. Wernick, E., “Skin friction of cylindrical anchors in non-cohesive soils,” Symposium on Soil Reinforcing and Stabilising Techniques, Sydney, Australia, pp. 201-219 (1978).
    48. Wiss, J.F., “Construction vibrations: state-of-the-art,” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2 (1981).
    49. Woods, R.D., and Jedele, L.P., “Energy attenuation from construction vibrations,” Vibration Problems in Geotechnical Engineering, pp. 229-246 (1985).
    50. Xia, H., Zhang, N., and Cao, Y.M., “Experimental study of train-induced vibrations of environments and buildings,” Journal of Sound and Vibration, Vol. 280, No. 3-5, pp. 1017-1029 (2005).
    51. Yoshimi, Y., and Kishida, T., “Friction between sand and metal surface, 10th ICSMFE, Stockholm, Sweden, pp. 831-834 (1981).

    QR CODE
    :::