| 研究生: |
邱寶賢 BAO-SIAN CIOU |
|---|---|
| 論文名稱: |
綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究 Process development of proton-exchanged waveguides in periodically poled MgO:LiNbO3 for green second harmonic generation |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鈮酸鋰 、質子交換 、波導 、二倍頻 、綠光 、鎂摻雜 |
| 外文關鍵詞: | LiNbO3, Green, SHG, Waveguide, SPE, APE, PE, RPE, MgO doped |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鋰具有良好的高非線性係數、電光係數、及鐵電姓質,因此我們可以利用這些特性讓一小片的sample距有多功能的能力。利用鐵電性質,我們可以發展出極化反轉的製程;利用非線性係數,我們可以製造出任何波段的雷射;利用電光係數,我們可以應用電光調置產生脈衝雷射。而為了減少光折變的效應,我們應用了鎂摻雜鈮酸鋰晶體來改進光折變的缺點。應用準相位匹配(Quasi-Phase Matching)的原理及極化反轉製程,再結合低損耗的光學波導的製作,我們可以達到良好的轉換效率,產生二倍頻(Second-Harmonic Generation)綠光雷射。
本研究成功的利用外加高壓電場法在5mol./%鎂摻雜鈮酸鋰基材上製作出18μm的極化反轉三階週期。使其反轉面積與全部面積比例為50%(DUTY)左右。
本論文以退火式質子交換波導(Anneal proton exchange, APE)、軟質子交換式波導(Soft Proton Exchange, SPE)及逆退火質子交換式波導(Reverse Proton Exchange, RPE)三種波導且以波導寬度為5、6、7μm做為比較。軟質子交換式波導的轉換效率約為20%W^(-1) cm^(-2),退火式質子交換波導約為30%W^(-1) cm^(-2)。軟質子交換式波導因深度不夠的關係,所以造成耦合的效率降低,只要增加質子擴散時間,即可改善此缺點。其轉換效率預測會大於退火式質子交換波導。因為退火式質子交換波導在製程過程中會造成死層(dead layer),使得非線性係數破壞,因此在相同的耦合條件下,軟質子交換式波導的效率會比退火式質子交換波導更好。而在量測過程中,因光纖耦合波導的效率不好,所以量測泵浦光時會量到其他雜散光,因此所量測出的效率會較低,若改善量測方法,相信可以達到更好的轉換效率。
逆退火式質子交換波導在製程過程中遇到晶格產生破壞的現象,推論是因為氫離子過度累積造成退火時應力過大所產生的破壞現象。所以本論文將會提出對於此製程可行的方法,以改善晶格破壞的情況。
LiNbO3 has higher nonlinear, electro-optic coefficient and ferroelectric property. We could fabricate a single chip with more capability. By using ferroelectric property and lithography, we can develop the periodically inverted domain, Using the nonlinear coefficient, we can generate any wavelength of laser. Using the electro-optic coefficient, we can produce Q-switched pulse laser. For reduce the effect of photorefractive, we choose MgO:LiNbO3 crystal to improve it. Appling the theory of quasi-phase matching and the fabrication of periodically poled, and combination with low loss optic waveguide, we can get high efficiency of second-harmonic generation (SHG) for green light laser.
We successfully fabricate these 18 um 3rd period domain inverse with 5mol/% Mg-doped Linbo3 substrate, the duty cycle about 50%. This paper makes a comparison among three kind of waveguide, Anneal proton exchange, Soft proton exchange, Reverse proton exchange. Conversion efficiency of soft proton exchange waveguide is about 20%W^(-1) cm^(-2), anneal proton exchange waveguide is about 30%W^(-1) cm^(-2). Due to the depth of the soft proton exchange waveguide not quite enough, coupling efficiency become low. If we increase proton exchange time, can improve this situation.It is predicted that conversion efficiency of SPE waveguide would better than APE waveguide. There is a dead layer result in APE waveguide fabrication process, meanwhile destroy nonlinear coefficient. Due to the bad fiber to waveguide coupling efficiency, therefore scattering of fundamental light and noise were detected to reduce it in the measurement. we will have better result by improving the measurement.
In fabrication the reverse proton exchange waveguide, it will cause the crystal-destroyed. We supposed that the more hydrogen ions accumulate the more crack will occur in crystal when the annealing processed therefore, we proposed some of new fabrication method to improve this situation
[1] S. E. Miller, ”Integrated Optics : an introduction,” Bell. Syst.Tech.J. ,48,p2059-2069(1969)
[2]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “interactions between light waves in a nonlinear dielectric”, Phys. Rev. Vol127. No 6. Pp.1918-1939,1962
[3]M. M. Fejer, G. A. Magel, D. H. Jundtm and R. L. Byer, “Quasi-phase=matched second harmonic generation:tuning and tolerance”, IEEE Quantum Electron, Vol.28,No.11,pp.2631-2654-1992
[4]K. Gallo and G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguide”. Appl. Phys., Vol.71, No.8, pp.1020-1022, 1997
[5] Kiminori Mizuuchi, Tomoya Sugita, and Kazuhisa Yamamoto, ”Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3”, OPTICS LETTERS , Vol. 28, No. 15(2003)
[6] G.T.Reed, B.L. Weiss:Nucl. Instrum. Methods Phys. Res. B /vol.B19/20 pt.2(1987) p.907-11
[7] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T.Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3ridge-type waveguide by frequency doubling of a diode end-pumpedNd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[8] Martin M. Fejer, G.A Magel, Dieter H. Jundt, and Robert L. Byer ”Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances ”IEEE J. Quantum elextron.28,11.p2631,1992
[9] L. E. Myers, G . D Miller, R .C. Eckardt. M. M. Fejer, and R. L. Byer ”Quasi-Phase-Matched 1.064 μm pumper optical parametric oscillator in bulk periodically poled LiNbO3 ”Opt. Lett, 20, 1, p52,1995
[10]林宜慶,”高電壓致鈮酸鋰小週期區域反轉與動力學研究”,國立台灣大學光電工程研究碩士論文,1999.
[11] Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide cystals”, Opt. Lett., 30, p.73(2005).
[12]Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchange waveguide in MgO-doped LiNbO3: Optical and structure properties”, J. Appl. Phys., Vol.94, No.2,pp.1163,2003.
[13]S. Steinberg, R. Goring, T. Henning, and A. Rasch. Opt. Lett., Vol.20, pp.683,1995
[14] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[15] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[16]L. E. Myers, :Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,:Ph.D, Dissertation, Department of Electrical engineering, Stanford University, Stanford, CA,1995
[17] M. M. Fejer, Phys. Today 47, 25 (1994)
[18] M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides”, OPTICS LETTERS, Vol. 16, No. 23, 1991
[19] Yuri N. Korkishko, Associate Member, IEEE, Vyacheslav A. Fedorov, Associate Member, IEEE, andOksana Y. Feoktistova, “LiNbO3 Optical Waveguide Fabrication by
High-Temperature Proton Exchange”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 4, APRIL 2000
[20] K. El Hadi , P. Baldi , M.P. De Micheli , D.B. Ostrowsky. ,Yu.N. Korkishko , V.A. Fedorov , A.V. Kondrat’ev, “Ordinary and extraordinary waveguides
realized by reverse proton exchange on LiTaO,” Optics Communications 140 (1997) 23-26
[21] Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, and T. V. Morozova, “Characterization of a-phase soft proton-exchanged
LiNbO3 optical waveguides”, J. Opt. Soc. Am. A, Vol. 18, No. 5, 2001
[22] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-indexwaveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[23]K. Yamamoto, K. Mizuuchi, Tetsuo”low-loss channel waveguide in MgO:LiNbO3 and LiTaO3 pyrophosphoric acid proton exchange”, Jpa. J. Appl. Phys. 31,4,p1059,1992
[24] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE in LiNbO3”, J. Appl. Phys. 70, 11, p6663, 1991
[25] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram ofHxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics., 2, p187-196 (1996).
[26] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev “Proton-Exchanged Waveguides in MgO-doped LiNbO3: Optical and Structural Properties,” J. Appl. Phy.,vol.94,pp1163-1169(2003)
[27] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[28] Yuri N. Korkishko, Associate Member, IEEE, Vyacheslav A. Fedorov, Associate Member, IEEE, and Oksana Y. Feoktistova, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 4, APRIL 2000
[29] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[30] J. Manuel, and M. M. de Aelmeda, “Design methodology of annealed H+waveguides in ferroelectric LiNbO3”, Optical. Engineering., 16, p.1844-1846(1991).
[31] 余兆陞,”以鎂摻雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究”中 央大學碩士論文,DOP (2008).
[32] Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides”, J. Appl. Phys. 66, p.5161-5174
(1989).
[33] A. Loni, R. M. De La Rue, and J. M. Winfield, “Proton exchanged, lithium niobate planar optical waveguides: chemical and optical properties and room temperature hydrogen isotopic exchange reactions,” J. Appl. Phys. 61, 64–67 (1987).
[34] José Manuel M. M. de Almeida Universidade de Trás-os-Montes e Alto Douro Departamento de Física 5001-811 Vila Real, Portugal E-mail: jmmma@utad.pt ” Design methodology of annealed H+ waveguides
in ferroelectric LiNbO3”, Optical Engineering 46_6_, 064601 _June 2007_
[35] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[36] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62,
[37] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[38] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[39] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[40] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “electric-field poling in Mg-doped LiNbO3”, J. Appl. Phys.,vol.96,p6585-6590(2004)[30] G. D. Miller” Periodically poled lithium niobate : modeling,fabrication,and nonlinear-optical performance”
[41] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[42] A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields” Appl. Phys. Lett.,vol.69,p1565-1567(1996)
[43] K. El Hadi, P. Baldi, S. Nouh, and M. P. De Micheli,” Control of proton exchange for LiTaO3 waveguides and thecrystal structure of HxLi12xTaO3”, OPTICS LETTERS, Vol. 20, No. 16 , 1995
[44] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[45] M. Digonnet, M. Fejer, and R. Byer, “Characterization of proton-exchanged waveguides inMgO:LiNbO3”, Vol. 10, No. 5, OPTICS LETTERS, 1985
[46] 余兆陞,” 退火式質子交換波導PPLN 電光調制TM 模態轉輻射偏振態之研究”中 央大學碩士論文,DOP (2008).
[47] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi,and A. Leycuras” Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate”, APPLIED OPTICS y Vol. 35, No. 36 y 20 December 1996