| 研究生: |
詹勳緯 Hsun-wei Chan |
|---|---|
| 論文名稱: |
侷域性表面電漿效應用於蕭基二極體太陽能電池之研究 Localized Surface Plasmon on Schottky Solar Cell |
| 指導教授: |
張正陽
Jenq -yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 蕭基太陽能電池 、侷域性表面電漿 |
| 外文關鍵詞: | Schottky Solar Cell, Localized Surface Plasmon |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文基板選ITO玻璃為基板,在ITO玻璃上使用快速熱退火(RTA)燒出銀奈米顆粒再沉積非晶矽,以ITO與半導體間的異質接面製作成蕭基二極體太陽能電池(目前製作出單純蕭基接面太陽能電池效率約(0.4~0.7%)並在接面加上銀奈米顆粒元件。
表面電漿共振頻譜會因金屬奈米顆粒尺寸與形貌而有不同響應頻譜,且隨著顆粒大小增加,共振波長會有紅移現象。由角度分析頻譜儀發現圓形顆粒共振吸收,在低角度(20°~45°)會有強吸收情況。奈橢球型或島狀奈米顆粒,對於共振吸收情形,在高角度(40°~70°)有強吸收情形。
表面電漿效應,有遠場奈米顆粒散射和近場侷限性共振模態兩種效應偶合,透過奈米顆粒的表面電漿效應,可以增加光捕捉與光聚集的情況。透過AM1.5太陽模擬器(Solar Simulator)量測奈米顆粒元件(含奈米顆粒的蕭基太陽能電池)對於光電轉換效率的影響。5nm銀薄膜RTA300℃、400℃、500℃奈米顆粒元件對於光電轉換效率(0.5%、0.7%、0.3%)有增加效果(參考片0.28%), 10nm薄膜厚RTA300℃、400℃、500℃奈米顆粒,在相同參數有正流元件、逆流元件同時存在,透過角度解析頻譜,沒有明顯光吸收變異,確認正、逆流元件產生主因受到銀奈米顆粒造成電性上的影響。
Indium tin oxide (ITO) glass is applied as the substrate for Schottky solar cell with silver (Ag) nano-particles embedded in the depletion region. The silver nano-particles are easily fabricated through RTA annealing process. The Schottky solar cell consists of a hetero-junction between ITO and hydrogenated amorphous silicon (a-Si:H) and has conversion efficiency of 0.4~0.7% (without the Ag nano-particles).
Localized surface plasmon resonates at different wavelength according to the size and shape of metallic nano-particles. With the increase of particle size, the resonance wavelength red shifts. We observe high absorption with lower incident angle of light (20°~45°) through measurement of angle-resolved spectrum when the nano-particles have shape of hemi-sphere. When the nano-particles form shape of hemi-ellipsoid or long-island, the high absorption occurs with higher incident angle of light (40°~70°).
Localized surface plasmon resonance shows two effects: scattering effect in far field and localizing energy in near field; two effects can increase the light trapping and absorption in solar cells. Ag nano-particles fabricated by RTA 300°C, 400°C, and 500°C with initial Ag thin film thickness of 5nm improve the conversion efficiency of Schottky solar cells to 0.5%, 0.7%, and 0.3% while the reference cell has conversion efficiency of 0.25%. However, the conversion efficiency is not improved when the initial Ag thin film thickness is 10nm; strangely, parts of the cells with Ag particles show output power with an inverted setup in measuring J-V curve. We proposed that the conversion efficiency is dominated by electronic when the nano-particles become larg.
[1]黃惠良編譯,太陽能電池,(五南圖書出版公司,2008)
[2]Spear W.E., P.G. LeComber, J. Non-Crystal. Solids 8-10,727 (1972)
[3] A. Moores, New J. Chem. ,30,1121-1132 (2006)
[4] J. Tiggesbaumker, L. Koller, H. O. Lutz and K. H. Meiwesbroer , Chem. Phys.
Lett., 190, 42 (1992)
[5] J. Tiggesbaumker, L. Koller, K. H. Meiwesbroer and A. Liebsch , Phys. Rev. A:
At., Mol. Opt. Phys., 48, R1749 (1993)
[6] A. Liebsch , Phys. Rev. B: Condens. Matter, 48, 11317 (1993)
[7]邱國斌、蔡定平,金屬表面電漿簡介(2006)
[8] K. Lance Kelly, Eduardo Coronado,Lin Lin Zhao, and George C. Schatz, J. Phys. Chem. B 107, 668‐677(2003))
[8] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, New York, 1983).
[9] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, New York, 1983).
[10] U. Kreibig and M. Vollmer, Springer Series in Materials Science(1995).
[11] H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B 76,115123 (2007).
[12] M. Meier and A. Wokaun, Opt. Lett. 8,581 (1983).
[13] A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[14]Donald A. Neamen, Semiconductor Physics& Device(1997)
[15] S. Aggarwal, A. P. Monga, S. R. Perusse, R. Ramesh,V. Ballarotto, E. D. Williams,B. R. Chalamala, Y. Wei, R. H. Reuss, Science 287, 2235, (2000).
[16] T.L. Alford, L. Chen , K. S. Gadre, ” Stability of silver thin films on various
underlying layers at elevated temperatures”, Thin Solid Films, 429, 248, (2003).
[17] S. lljima and P. M. Ajayan, “Substrate and size effects on the coalescence of small particles”, J. Appl. Phys. 70, 5138, (1991).