| 研究生: |
李龍平 Lung-ping Lee |
|---|---|
| 論文名稱: |
具氰基官能基之中孔洞材料 SBA-1 的合 Synthesis and Characterization of CubicMesoporous Silicas SBA-1 with NitrileFunctionality |
| 指導教授: |
高憲明
Hsein-ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 氰基官能基 、中孔洞 |
| 外文關鍵詞: | cyano functional, organosilca, mesoporous |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇研究是以CNTES ((2-cyanoethyl)triethoxylsilane) 與
TMOS (Tetramethyl orthosilicate) 為共同矽源, 使用 C16TEABr
(cetyltriethylammonium bromide) 作為模板試劑,在反應溫度為273 K
下直接合成具有氰基官能基的中孔洞材料SBA-1,之後經由HCl /
EtOH 溶劑做萃取處理,移除模板後,得到的中孔洞材料仍然具有
SBA-1 的結構存在。研究發現氰基官能基化的中孔洞材料SBA-1,其
CNTES 含量可達25%,對於中孔洞立方結構不會造成相轉變或是結
構破壞,而其表面積、孔洞體積以及孔洞直徑均會隨CNTES 含量的
增加而有遞減的趨勢。
藉由改變不同的酸量、不同的水熱時間、不同的攪拌時間以及不
同矽源,探討對於合成具有氰基官能基的SBA-1 的影響。在改變不
同的酸量的方面,可以觀察到不同的結果,在XRD 的結果中,可發
現隨著酸量的增加,可加入在SBA-1 中的CNTES 之含量也隨之增
加,而在29Si MAS NMR 也觀察到隨著酸量的增加,有助於中孔洞材
料SBA-1 結構的穩定。
利用不同酸的種類作為酸源,以及改變攪拌時間與水熱時間,探
討對於氰基官能基氧化率的影響,研究官能基轉變的情形。
Well-ordered cubic mesoporous silicas SBA-1 functionalized with
cyano functional groups have been successfully synthesized via the
co-condensation of tetramethoxysilane (TMOS) and
((2-cyanoethyl)triethoxylsilane) (CNTES) templated by
cetyltriethylammonium bromide (CTEABr) under strongly acidic
conditions. In order to optimize the degree of the structural ordering of
cyano-functionalized mesoporous silicas SBA-1, a wide range of
synthesis conditions such as synthesis temperature, CNTES loading,
reaction time, hydrothermal periods, and acid concentrations and types
was systematically investigated.
The materials obtained were characterized by a variety of techniques
including powder X-ray diffraction (XRD), nitrogen sorption
measurements(BET), 13C and 29Si magic angle spinning (MAS), IR,
scanning electron microscopy (SEM), and thermogravimetric analysis
(TGA).
The concentration of CNTES that can co-condense with TMOS can be
up to 25% without observing a significant loss in the structure order of
the cubic SBA-1 mesostructure. The lower TMOS/CNTES ratios
resulted in materials with higher functional group loadings. The HCl
concentration was found to be an important factor determining the
stability of cyano-functionalized SBA-1 towards the solvent extraction treatment. The BET surface area and the mesoporous volume decrease
with increasing the contents of CNTES in initial synthesis mixture. Thesuccessful incorporation of cyano group in the SBA-1 materials by solid
state 29Si MAS , and 13C CP/MAS NMR.
1. Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729-1742.
2. (a) Lauher, J. W.; Hoffmann, R. J. Am . Chem. Soc. 1976, 98, 1729-1742.
(b) Heck, R. F.; Breslow, D. S. J. Am . Chem. Soc. 1961, 83, 4023-4027
(c) Brown, C, K.; Wilkinson G.;J. Chem. Soc. A. 1970,2753
3. Bond, G. C. ‘‘Heterogeneous Catalysis:Principles and Applications.’’
2nd ed. Clarendon Press, Oxford, UK,1987.
4. Miessler, G. L.; Tarr, D.A. ‘‘Inorganic Chemistry’’ , 2nd ed, Prentice Hall,
New York, 1999. pp. 498
5. Satterfield, C. N. ‘‘Heterogeneous Catalysis in practice.’’, McGrew-Hill,
New York, 1980.
6. Todros, T. F. “Surfactant”, Academic Press, London, 1984.
7. Lindman, B.; Wennerström, H. Micelle: Amphiphile Aggregation in
Aqueous solution, Heidelberg, S.-V. 1980.
8. Holmerg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. “Surfants and
Polymers in Aqueous Solution” 2nd ed., John Wiley & Sons Ltd, England,
2003.
9. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.
Faraday Trans. 1976, 72, 1525-1568.
10. Tanford, C. “The Hydrophobic Effect: Formation of Micelles and
Biological Membranes”, Wiley, New York, 1973.
11. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC,
New York, 1999.
12. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996,
111, 195-202
13. McBain, J. N. “The Sorption of Gases and Vapors by Solids”, George
Rutledge and Sons Ltd., London, 1932.
14. Freude, D.; Hunger, M.; Pfeifer, H. Z. Phys. Chem. 1987, 152, 171.
15. (a) Yang, S. M.; Wu, S. T.; Chin, J. Chem. Soc., 1988, 35, 141.
(b) Hedge, S.G.; Ratnasamy, P.; Kustov, L. M.; Kazansky, V. B. Zeolites,
1988, 8, 137.
(c) Davis, M. E.; Montes, C.; Garces, J. M. ACS symposium series, 1989,
399, 291.
16. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, E. J.; Vartuli, J. C.; Beck, J. S.
Nature, 1992, 359, 710-712.
(b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C.
T.; Schmitt, K. D.; Chu, C. T-W.;Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc.
1992, 114, 10834-10843.
17. (a) Busio, K.; Jänchen, J.; van Hooff, J. H. C. Microporous Mater. 1995,
5, 211-218.
(b) Weglarski, J.; Datka, J.; He, H.; Klinowski, J. J. Chem. Soc. Faraday
Trans. 1996, 92, 5161-5164.
(c) Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke,
R. Microporous Mater. 1997, 9, 13-33.
(d) Cheng, C.-F.; Klinowski, J. J. Chem. Soc. Faraday Trans.
1996, 92, 289-292.
(e) Luan, Z.; He, H.; Zhou, W; Cheng, C.-F.; Klinowski, J. J. Chem. Soc.
Faraday Trans. 1995, 91, 2955-2959.
(f) Mokaya, R.; Jones, W. Chem. Commun., 1996, 983-984.
18. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.;
Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.;
Stucky, G. D.; Chmelka, G. F. Science. 1995, 267, 1138-1143.
19. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am.
Chem. Soc. 1998, 120, 6024-6036.
20. Pluronic poly(alkene oxide) triblock copolymers are trademarked
products of BASF, Mt. Olive, NJ.
21. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.;
Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994,
368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
22. (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269,
1242-1244.23. (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36,
516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36,
910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J.
Am. Chem. Soc. 1997, 119, 3596-3610.
24. (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc.
2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12,
1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys.
Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105,
6817-6823.
25. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.;
Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552-2558.
26. IUPAC. “Manual of Symbols and Serminology for Physicochemical
Quantities and Units. Appendix II : Denitions, Terminology and Symbols
in Colloid and Surface Chemistry part I”, Pure Appl. Chem., 1972, 31,
579
27. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,P.;
Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994,
368, 317-321.
28. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 ,
Wiley-Interscience publications: New York, 2000.
29. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
30. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky,
G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453
31 Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.;
Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
32. Liu, J. ; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L.
Adv. Meter. 1998, 10, 161-165.
33. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12,
1403-1419.
34. Steel, A. ; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7,
1829-1832.
35. Fowler, C. E.;Burkett, S. L.;Mann, S. Chem. Commun. 1997, 1769.
36. Zheng, Y. ; Shengyang T. ; Jinxiang Y. J. Mater. Chem.,2006, 16,
2347-2353.
37. Qunli, T. ; Yao, X. ; Dong, W. Journal of Solid State Chemistry 179
(2006) 1513-1520.
38. Nanguo, L. ; Roger A. A. ; Jeffrey B. Chem. Commun., 2003, 370-371.
39. Yang, C. M. ; ;Wang, Y. Phys. Chem. Chem. Phys. 2004, 6, 2461-2467.
40. Mohammad, A. W. Microporous and Mesoporous Materirals 69 (2004)
19-27.
41. Jessica, M. R. ; Teresa, C. ; Freddy K. Langmuir 2007, 23, 4315-4323.
42. Margolese, D. ; Melero, J. A. ; Christiansen, S. C. Chem. Mater. 2000,
12, 2448-2459.
43. Melero, J. A. ; Stucky, G. D. ; Grieken, R. ; Morales, G. J. Mater.
Chem.,2002, 12, 1664-1670.
44. Hamoudi, S. ; Kaliaguine, S. Microporous and Mesoporous Materirals
59 (2003) 195-204.
45. Mbaraka, I. K. ; Radu, D. R. ; Shanks, B. H. Journal of Catalysis 219
(2003) 329-336.
46. Lee, J. F. ; Cheng, S. F. Journal of Catalysis 223 (2004) 152-160.
47. Yang, Q. ; Liu, J. ; Yang, J. ; Mahendra, P. K. ; Shinji I. Journal of
Catalysis 228 (2004) 265-272.
48. Shimizu, K. I. ; Eidai, H. ; Tsuyoshi H. ; Tatsuya, K. ; Tomoya, H.
Journal of Catalysis 231 (2005) 131-138.
49. Liu, J. ; Yang, Q. ; Mahendra P. K. ; Norihiko, S. ; Shinji, I. ; Yang, J. ;
Zhang, L. J. Phys. Chem. B. 2005, 109, 12250-12256.
50. Yang, L. M. ; Wang, Y. J. ; Luo, G. S. ; Dai, Y. Y. Microporous and
Mesoporous Materirals 84 (2005) 275-282.
51. Kiyotaka, N. ; Ikuyoshi, T. ; Michikazu, H. ; Shigenobu, H. ; Kazunari,
D. ; Junko, N. K. Catalysis Today 116 (2006) 151-156.
52. Reddy, S. S. ; David R. ; Kumar, V. S. ; Padmasri, A. H. ; Narayanan, S. ;
Rama, K. S. Catalysis Communications 8 (2007) 261-266.
53. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
54. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.;
Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
55. 國家同步輻射中心 (NSRRC), 新竹市, 台灣省
56. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem.
Soc. 1940, 62, 1723-1732.
57. Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface
Chemistry”, 3rd ed. Marcel Dekker, New York, 1997.
58. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73,
373-380.
59. 汪建民、江志強,材料分析,第十八章,93 年
60. Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G.
J.Chem.Phys. 1995, 103, 6951.
61. Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
62. Pines, A.; Gibby, M. G.; Waugh, J. S. J.Chem.Phys. 1972, 56, 1776.
63. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem. 1996, 100,
9906-9910.
64. 黃忠智、湛憶秦,科儀新知,第二十卷第六期,88年
65. Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of
Silicates and Zeolites”, John Wiley & Sons Inc, New York. 1988.
66. Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;Liu, J.;Kemmer,
K. M. Science 1997, 276, 923.
67. Price, N. P.;Stevent, L. Fundamentals of Enzymology Second Edition
(Oxford New York)
68. Fowler, C. E.;Burkett, S. L.;Mann, S. Chem. Commun. 1997, 1769.
69. Das, D.; Lee, J. F.; Cheng, S. Chem.Commun. 2001, 2178-2179.
70. Margolese, D. ; Melero, J. A. ; Christiansen, S. C. ; Chmelka, B. F. and
Stucky, G. D. Chem. Mater. 2000, 12, 2448-2459.
71. Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of
Silicates and Zeolites”, John Wiley & Sons Inc, New York. 1988.