| 研究生: |
游雁斐 Yen-Fei Yu |
|---|---|
| 論文名稱: |
電化學技術用於平面去除水泥砂漿鹽分之基礎研究 |
| 指導教授: | 李釗 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 233 |
| 中文關鍵詞: | 電化學技術 、建築孔隙材料 、鹽害 、可溶性鹽類 、電解槽間距 |
| 外文關鍵詞: | Electrochemical technology, building porosity material, salt damage, soluble salts, electrode distance |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用電化學技術設計一套適用於處理孔隙性材料建築物鹽害問題的通電模組,希望在電場驅動力作用下將誘發建築孔隙材料鹽害問題的可溶性鹽類移除,並將適當的離子送入試體中,探討修復或降低孔隙材料受到可溶性鹽類侵蝕的成效,以作為後續研究及實務應用之基礎。
本研究施加電場為定電流密度模式,並分別以1 N氫氧化鋰水溶液及1 N氫氧化鈉水溶液作為陽極與陰極電解槽電解液。於試體配比條件相同下,藉由監測電解槽內鈉、鋰及氯離子含量與通電歷時及累積電荷量的關係,分析施加不同電場強度及不同陰陽極電解槽間距配置對離子傳輸的影響,並於通電結束,分析試體內殘餘游離態離子含量及分佈趨勢。結果顯示,無論施加的電場強度大小,當陰陽極電解槽間距增長後,系統阻抗值皆有變大的現象,單位電量所能移出的氯離子含量也隨之增加。試體中的氯離子及鈉離子的移出百分率隨著施加定電流密度增加而增加,且離子移出的累積量與通電歷時有良好的相關性。當施加定電流密度為5 A/m2時,較有效可移除試體內氯離子及鈉離子的電解槽間距可達到6 cm至9 cm;當施加定電流密度7 A/m2時,較有效率可移除試體內氯離子及鈉離子的電解槽間距配置可超過9 cm。
This research uses electrochemical techniques to design a set of electrical module which suitable to treat salt damage problem of porosity material building. Hoping the driving force of the electrical field will remove the soluble salts in the building porosity material and send appropriate ions into the material. To investigate the performance of repair or lower the salt damage problem of porosity material, as a basis for further research and practical application.
The applied electrical field of this research is constant current density pattern. 1N LiOH.H2O and 1N NaOH used as anolyte and catholyte solutions, respectively. At the same condition of specimen mix design, by monitoring the relationship between the concentration of sodium, lithium and chloride ions and the electrical time and the accumulated quantity of electric charge, to analysis the ion migration effect of applied electrical field strength and the distance between electrodes. After electrifying, analysis the residual free ion content and distribution trend in specimen. Results show that for all the applied electric field strength, when the distance between electrodes increases, the system resistance value becoming larger and the removable amount of chloride ions in specimen increasing. The removed amount of chloride and sodium ions in specimen increases with increasing applied constant current density. The relationship between the removed cumulative ion amount and electrifying duration has a good correlation. When applying a constant current density of 5 A/m2, the effective electrode distance for removing chloride and sodium ions in specimen is 6 cm to 9 cm. When applied at a constant current density of 7 A/m2, the effective electrode distance can exceed 9 cm.
[1] Arnold, A., and Zehnder, K., “Monitoring Wall Paintings Affected by Soluble Salts,” The Conservation of Wall Paintings, Getty Conservation Institute, London, pp.103-136, 1987.
[2] 邵慶旺、張舜孔,「高雄市歷史建築代天宮潘麗水巨幅壁畫之調查、脫鹽與修復」,文化資產保存學刊(25),pp.61-94,2013。
[3] C. A. Price., “Stone Conservation Stone Conservation An Overview of Current Research,”Getty Conservation Institute, 1996.
[4] Young D., “Removing the salt. International Symposium on Salt Attack in Traditional Building,” Bureau of Cultural Heritage, pp. 97-115, 2013.
[5] 施建志、蘇家慶,「建築物材料劣化問題及其修復」,工業材料,pp.117-125,1997。
[6] 施育榮,「室內白華處理工法探討與實例」,中華大學土木工程學系, 新竹市,2011
[7] 陳恕行、程紹瑋、吳佳慧等人,「壁癌處理方法分析」,崑山科技大學機械工程系,台南市,2011。
[8] Su Bomin., “Salt Damages and Restoration Techniques on Wall Paintings of Mogao Grottoes,” Bureau of Cultural Heritage, International Symposium on Salt Attack in Traditional Building, pp. 209-224, 2013.
[9] 顏聰,「土木材料」,顏聰,台灣,2008。
[10] 鄭明水,「鹽對台灣古蹟磚石材料影響之研究」,國立雲林科技大學文化資產維護系,雲林縣,2008
[11] 張士昱,「易潮解無機氣膠含水特性之研究」,國立中央大學環境工程學研究所,中壢,2002。
[12] Mihaly Posfai, James R. Anderson, Peter R. Buseck,Tom W. Shattuck, and Neil W. Tindale., “Constituents of a remote pacific marine aerosol: A tem study,” Atmospheric Environment, Vol. 28, No. 10, pp. 1747-1756, 1994.
[13] 李恆毅,「應用敷濕膏技術來減少壁畫中鹽分之調查研究:以嘉義縣新港水仙宮二級古蹟為例」,國立臺南藝術大學博物館學與古物維護研究所,台南,2012。
[14] Arnold, A., and Zehnder, K., “Verwitterungsschaden durch Ameisensaure,” Schweizer Ingenieur und Architekt, pp. 841-845, 1983.
[15] Young, D., and Ellsmore, D., “Salt attack and rising damp – A guide to salt damp in historic and older buildings,” Heritage council of NSW, Heritage Victoria, South Australian,Department for environment and heritage, Adelaide City Council, pp. 61-94, 2008.
[16] WashingtonInstitute of Masonry, “Nothwest Masonry Guide,” Part 4, C, Clean, Restoration, and Maintenance Masonry, 2004.
[17] Borrelli E., “Salts and built heritage: forms of deterioration, surveying, measuring, desalting and preventing damages,” International Symposium on Salt Attack in Traditional Building, Bureau of Cultural Heritage, Tainan, pp. 9-44, 2013.
[18] Barbara Lubelli, and Rob P.J. van Hees., “Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties,” Journal of Cultural Heritage, Vol. 11, pp. 10-18, 2010.
[19] Goretzki L., and Terheiden, C., “Vergleichende Untersuchungen zur Wirksamkeit,” Bauhaus-Universität Weimar, unpubl, 2003.
[20] Auras Michael, “Poultices and mortars for salt contaminated masonry and stone objects,” The National Museum Copenhagen, Proceedings from the International Conference, Technical University of Denmark., pp.197-217, 2008.
[21] Auras, M., and Melisa, G., “Kompressenentsalzung - Wirkungsprinzip,Materialien, Anwendung, Fallbeispiele,” In: Salze im historischen Natursteinmauerwerk Institut für Steinkonservierung e.V., Mainz, pp. 41-52, 2002.
[22] 陳桂清,「港灣R.C.構造物腐蝕檢測與防蝕原理」,鋼筋混凝土構造物防蝕技術與應用研討會論文集,pp.1-27,台中,2002。
[23] 王韡蒨、劉志堅、李釗,「加速鋰離子傳輸技術的施加電流密度與陽離子傳輸參數關係」中國土木水利工程學刊, 23(3), pp. 307-316,2011。
[24] Lee, C., Liu. C. C., and Wang, W. C., “Behavior of cations in mortar under accelerated lithium migration technique controlled by a constant voltage,” Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 26-34, 2009.
[25] R. A. Livingston and T. H. Taylor, J. R., “Diagnosis of Salt Damage at a Smokehouse in Colonial Williamsburg,” ATP Bulletin,Vol. 23, pp. 3-12, 1991.
[26] Bourges, A., and Verges-Belmin, V., “Comparison and optimization of five desalination system on the inner walls of SantPhilibert Church in Dijon,” Proceedings from the international conference, Salt Weathering on Buildings and Stone Sculptures, The National Museum Copenhagen, Denmark, pp. 29-40, 2008.
[27] J. H. Bungey and S. G. Millard, “Testing of Concrete in Structures,” Blackie Academic & Professional, Chapman & Hall., 1996.
[28] 王韡蒨,「單維電化學傳輸陽離子技術抑制混凝土ASR之研究」,國立中央大學土木工程研究所,博士論文,中壢,2010年。