跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游博淮
Yu-Po Huai
論文名稱: 多晶矽材料之線切割放電加工特性及其
Machining characteristics of polycrystalline silicon by wire electrical discharge machining and surface quality improvement
指導教授: 顏炳華
Yan-Biing Hwa
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 112
中文關鍵詞: 電解加工線切割放電加工微裂痕多晶矽放電坑
外文關鍵詞: crack, electrolytic machining (EM), polycrystall silicon, Wire electrical discharge machining (WEDM)
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能電池近年來在成本與轉換效率上的改善,使得其應用日漸普及,但亦因全球矽晶棒之產能不足,使得原材價格節節上升,因此如何降低矽晶圓切割加工過程的材料損耗(kerf loss),成為目前重要之課題。因此本文利用線切割放電加工法(Wire electrical discharge machining, WEDM)來加工多晶矽材料(2-3 Ωcm),探討各項參數因子對於加工特性上的影響。由實驗結果得知,開路電壓為影響多晶矽材料突破絕緣的關鍵參數,而脈衝時間(pulse-on time)則對加工率影響也有相對影響。其它加工因子則對加工速率影響不大,但對加工溝槽寬和表面粗糙度則有改善效果。實驗中亦導入以雙脈衝波電源模式進行加工,與傳統脈衝電源相較,可提升加工速率。由實驗証明此線切割放電加工法確實可應用在多晶矽材料的切割,日後將此線切割放電製程技術應用於太陽能相關產業上,將有很大之競爭力。
    雖然線切割放電可應用於多晶矽材料上切割,但加工機制乃是利用電能轉變成熱能產生高溫達到去除材料的目的,在加工過程中,會因產生的局部高溫而使材料表面上形成微裂痕及放電坑,如此問題將會造成日後太陽能電池相關製成上產生負面影響,所以需要二次加工來進行改善。因此後續以電解加工附加磁力的方式,針對放電加工後的多晶矽材料進行表面改善的加工探討。電解實驗過程中以附加磁力的方式,能可有效改善加工後的表面品質,其改善率為33%。


    In recent years, the application of solar cell is very popular since the significant improvements on cost and electrical transfer efficiency. Accordingly, there is a big shortage on the raw material. Hence, how to minimize the kerf loss during machining so as to reduce cost for solar cell production has currently become an important research issue. This study examines the use of wire electrical discharge machining (WEDM) in machining polycrystalline silicon with resistivity of 2-3 Ωcm. The effects of different WEDM parameters on cutting speed, machining groove width, and surface roughness are explored. Experimental results indicate that open voltage is the critical parameter in breaking the insulation of polycrystalline silicon. The experimental results show that WEDM can be practically applied to machining polycrystalline silicon. Hence, applications of WEDM to manufacturing of solar cell can lead to significant enhancement in production efficiency. However, WEDM material removal mechanism involves heat generation. Cracks and craters are also formed on the workpiece surface under high-temperature melting and rapid cooling. All these undermine the surface quality of the WEDMed workpiece, which in turn affect both precision and life of the final product. Therefore, the improvement of surface defects by electrolytic machining (EM) to enhance surface quality will also introduce in this study. The experiment results show the surface roughness improvement rate up to 33 %.

    目錄 摘 要 i Abstract ii 誌謝 iv 目錄 v 圖 目 錄 viii 表 目 錄 xii 第一章 緒論 1 1-1研究背景 1 1-2 研就動機與目的 3 1-3 文獻回顧 5 1-3-1 放電加工 5 1-3-2電解加工 7 1-3-3 半導體矽晶圓切割製程方式介紹 8 1-4 研究方法 11 1-5 本文的構成 12 第二章 多晶矽之線切割放電加工特性研究 14 2-1 前言 14 2-2放電加工相關技術與原理 16 2-2-1 放電加工原理 16 2-2-2 放電加工去除機制 17 2-2-3 放電加工參數與影響 20 2-3 線切割放電加工之特性 23 2-4 實驗設定 27 2-4-1實驗設備 27 2-4-2 實驗材料 28 2-5 實驗步驟及流程 30 2-6 實驗結果與討論 32 2-6-1 開路電壓的影響 32 2-6-2 線張力的影響 36 2-6-3 沖水流率的影響 39 2-6-4 脈衝時間的影響 41 2-7 幾何造型加工 45 2-8 結論 46 第三章 利用雙段式脈衝電壓改善線切割放電多晶矽之加工效率 47 3-1 前言 47 3-2 實驗設備與方法 49 3-3實驗結果與討論 50 3-4 結論 55 第四章 磁力輔助電解加工對多晶矽加工特性之探討 56 4-1 前言 56 4-2 基本原理 58 4-2-1 電解加工基本原理 58 4-3 實驗設定 61 4-3-1實驗設備 61 4-3-2 實驗材料 62 4-4 實驗步驟與流程 65 4-5 實驗結果與討論 68 4-5-1 磁場在電解加工中的影響 68 4-6磁力輔助電解加工的影響 70 4-6-1 加工電壓的影響 70 4-6-2 電極間距的影響 73 4-6-3 加工時間的影響 75 4-7 結論 81 第五章 電源供應模式對多晶矽電解加工的影響 82 5-1 前言 82 5-2 實驗設置 83 5-2-1 實驗設備 83 5-2-2 實驗步驟 86 5-3 結果與討論 89 5-3-1 DC電壓模式電解加工前後對表面品質的影響 89 5-3-2 脈衝電壓模式對電解加工特性之影響 91 5-3-3輔助脈衝電壓型態對加工特性之影響 95 5-3-4 電解加工前後元素成份分析 97 5-5 結論 99 第六章 總結論 100 參考文獻 102 作者簡介 111 圖 目 錄 圖1-1 複線鋸切割製程方式示意圖 2 圖1-2 矽晶圓加工製程示意圖 4 圖1-3 外徑切割機製程示意圖 8 圖1-4 邊鋸製程示意圖 9 圖1-5 內徑切割機製程示意圖 9 圖1-6 線鋸切割機製程示意圖 10 圖1-7 實驗流程圖 11 圖2-1 放電加工原理示意圖 16 圖2-2 放電加工材料去除機制示意圖 19 圖2-3 放電加工波形示意圖 22 圖2-4 線切割放電加工示意圖 23 圖2-5 線切割放電加工機台 27 圖2-6 電源供應器 27 圖2-7 多晶矽原子結構其晶界排列示意圖 28 圖2-8 線切割放電加工多晶矽示意圖 30 圖2-9 實驗流程圖 31 圖2-10 開路電壓對加工速率的影響圖 33 圖2-11 線切割放電加工後表面放電集中SEM圖及其局部放大圖 33 圖2-12 不同開路電壓下放電波型比較圖 (Pulse-on time = 12μs) 34 圖2-13 開路電壓對加工溝槽寬的影響圖 35 圖2-14 開路電壓對表面粗糙度的影響圖 35 圖2-15 線張力對加工速率的影響圖 37 圖2-16 線張力對加工溝槽寬的影響圖 37 圖2-17 線張力對表面粗糙度的影響圖 38 圖2-18不同線張力值加工溝槽SEM圖 (Pulse-on time = 12us) 38 圖2-19 沖水流量對加工速率影響圖 39 圖2-20 沖水流率對加工溝槽的影響圖 40 圖2-21 沖水流率對表面粗糙度的影響圖 40 圖2-22 脈衝時間對加工速率影響圖 42 圖2-23 脈衝時間對加工溝槽寬的影響圖 42 圖2-24 脈衝時間對表面粗糙度的影響圖 43 圖2-25 不同脈衝時間對加工溝槽寬SEM圖 (Open voltage = 250 V) 43 圖2-26 不同脈衝時間的表面型態SEM圖 (Open voltage = 250 V) 44 圖2-27 不同脈衝時間EDS分析 (Open voltage = 250 V) 44 圖2-28 多晶矽材料切割幾何形狀示意圖 45 圖3-1 傳統及雙段式等頻率脈衝電壓操作示意圖 48 圖3-2 傳統及雙段式等頻率脈衝電壓電路示意圖 48 圖3-3 傳統與雙段脈衝電壓對加工速率的影響圖 51 圖3-4 傳統及雙段脈衝電壓放電電壓及電流波形圖 52 圖3-5 傳統與雙段脈衝電壓對加工溝槽寬的影響圖 53 圖3-6 傳統與雙段脈衝電壓對表面粗糙度的影響圖 53 圖3-7 傳統及雙段式脈衝電壓剖面SEM圖 54 圖4-1 電解加工示意圖 58 圖4-2 實驗設備示意圖 61 圖4-3 圓柱狀平板電極之尺寸圖 62 圖4-4 奴鐵棚磁鐵尺寸大小示意圖 63 圖4-5 實驗操作步驟流程示意圖 65 圖4-6 實驗流程圖 67 圖4-7 電解氣泡在有無磁場狀態下電解氣泡運動狀況 69 圖4-8 電解加工修平表面過程示意圖 71 圖4-9 磁力輔助電解加工加工電壓對材料移除量的影響 72 圖4-10 磁力輔助電解加工加工電壓對表面粗糙度的影響 72 圖4-11 磁力輔助電解加工電極間隙對材料移除量的影響 74 圖4-12 磁力輔助電解加工電極間隙對表面粗糙度的影響 74 圖4-13 電解加工氣泡堆積示意圖 75 圖4-14 磁力輔助電解加工加工時間對材料移除量的影響 76 圖4-15 磁力輔助電解加工加工時間對表面粗糙度的影響 77 圖4-16 加工剖面SEM圖 (Machining time= 5 min) 77 圖4-17 加工表面SEM圖 (Machining time= 5 min) 78 圖4-18 磁力輔助電解加工加工時間之EDS分析圖: (a) 0 min 79 (b) 1 min 和 (c) 3 min (磁通密度= 0.42T) 79 圖4-19 電解加工過程材料移除示意圖 80 圖5-1 不同加工電壓形式控制示意圖 83 圖5-2 輔助脈衝電壓之電路設計圖 84 圖5-3 數位訊號產生器 85 圖5-4 工作電壓用直流電源供應器 85 圖5-5 輔助電壓用直流電源供應器 86 圖5-6 實驗流程程圖 88 圖5-7 電解加工前後對表面粗糙度的影響圖 90 圖5-8 電解加工前後剖面和表面型態SEM圖 90 圖5-9 脈衝時間對材料移除量及表面粗糙度的影響 92 圖5-10 脈衝休止時間對材料移除量及表面粗糙度的影響 93 圖5-11 脈衝電壓電解加工後剖面及表面型態SEM圖 93 (Ton = 2ms, Toff = 4ms) 93 圖5-12 脈衝電壓型式電解加工中氣泡在極間影響示意圖 94 圖5-13 輔助電壓值對材料移除量及表面粗糙度的影響圖 95 圖5-14 輔助電壓(5V)電解加工後剖面及表面型態SEM圖 96 圖5-15 電解加工前後EDS分析圖 98 (a)線切割放電加工後; (b)電解加工後(A-P-V = 5V) 98 表 目 錄 表1-1 三種矽晶圓切割方法比較 6 表2-1 各種矽晶圓切割加工技術性比較分析 15 表2-2 線電極性質表 28 表2-3 線放電切割加工參數 29 表3-1 實驗加工參數設定 49 表4-1 線切割放電加工過程參數條件 62 表4-2 釹鐵錋磁鐵的材料性質 64 表4-3 磁力輔助電解加工加工參數表 66 表5-1 實驗加工參數表 87 表5-2不同電源模式在材料移除量及表面粗糙度的比較 97

    1. H. J. Moller, C. Funke, M. Rinio, S. Scholz, “Multicrystalline silicon for solar cells,” Thin Solid Films, vol. 487, pp. 179-187, 2005.
    2. H. J. Moller, “Basic mechanisms and models of multi-wire sawing,” Advanced Engineering Materials, vol. 6, pp. 501-513, 2004.
    3. H. J. Moller, “Wafering of silicon crystals,” Physcia Status Solidi A-Applications and Materials Science, vol. 203, pp. 659-669, 2006.
    4. 許坤明 編譯,非傳統加工,全華科技圖書股份有限公司出版,民國99年3月.
    5. D. K. Aspinwall, S. L. Soo, A. E. Berrisford, G. Walder, “Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology,” CIRP Annals-Manufacturing Technology, vol.57, pp. 57, 2008.
    6. J. W. Liu, T. M. Yue, Z. N. Guo, “Wire electrochemical discharge machining of Al2O3 particle reinforced aluminum alloy 6061,” Materials and Manufacturing Processes, vol.24, pp. 446-453, 2009.
    7. N. G. Patil, P. K. Brahmankar, “Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis,” International Journal of Advanced Manufacturing Technology, vol. 51, pp. 599-610, 2010.
    8. T. Taishi, K. Hoshikawa, Y. Ohno, I. Yonenaga, “Behavior of dislocations due to thermal shock and critical shear stress of Si in Czochralski crystal growth,” Physica B-Condensed Matter, vol. 404, pp. 4612-4615, 2009.
    9. K. Fujiwarw, K. Pan, K. Sawada, M. Tokairin, N. Usami, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, “Directional growth method to obtain high quality polycrystalline silicon from its melt,” Journal of Crystal Growth, vol. 292, pp. 282-285, 2006.
    10. Y. F. Luo, C. G. Chen, Z. F. Tong, “Investigation of silicon wafering by wire EDM,” Journal of Materials Science, vol. 27, pp. 5805-5810, 1992.
    11. Y. Uno, A. Okada, Y. Okamoto, T. Hirano, “High performance slicing method of monocrystalline silicon ingot by wire EDM,” Initiatives of Precision Engineering at the Beginning of a Millennium, 10th International Conference on Precision Engineering (ICPE), pp. 219-223, 2002.
    12. W. Y. Peng, Y. S. Liao, “Study of electrical discharge machining technology for slicing silicon ingots,” Journal of Materials Processing Technology, vol. 140, pp.274-279, 2003.
    13. H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M. Kunieda, “Cutting of polished single-crystal silicon by wire electrical discharge machining,” Precision Engineer-Journal of the International Societies for Precision Engineering and Nanotechnology, vol. 28, pp. 314-319, 2004.
    14. H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M. Kunieda, “High-quality cutting of polished single-crystal silicon by wire electrical discharge machining,” Precision Engineer-Journal of the International Societies for Precision Engineering and Nanotechnology, vol. 29, pp. 423-430, 2005.
    15. H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M. Kunieda, “Contouring of polished single-crystal silicon plates by wire electrical discharge machining,” Precision Engineer-Journal of the International Societies for Precision Engineering and Nanotechnology, vol. 31, pp. 358-363, 2007.
    16. E. Bamberg, D. Rakwal, “Experimental investigation of wire electrical discharge machining of gallium-doped germanium,” Journal of Material Processing Technology, vol. 197, pp. 419-427, 2008.
    17. W. Wang, Z. D. Liu, Z. J. Tian, Y. H. Huang, Z. X. Liu, “High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining,” Journal of Material Processing Technology, vol 209, pp. 3149-3155. 2009.
    18. D. Rakwal, E. Bamberg, “Slicing, cleaning and kerf analysis of germanium wafers machined by wire electrical discharge machining,” Journal of Material Processing Technology, vol. 209, pp. 3740-3751, 2009.
    19. D. Rakwal, S. Heamawatanachai, P. Tathireddy, F. Solzbacher, E. Bamberg, “Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining,” Microsystem Technology-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 789-797, 2009.
    20. H. Takahashi, Y. Okamoto, Y. Uno, A. Okada, Y. Abe, S. Takata, “Investigation on multi-wire EDM slicing method for polycrystalline silicon ingot,” 3rd International Conference of Asian Society for Precision Engineering and Nanotechnology, 2009.
    21. H. Hocheng, P. S. Pa, “Electropolishing and electrobrightening of holes using different feeding electrodes,” Journal of Materials Processing Technology, vol. 89-90, pp. 440-446, 1999.
    22. H. Ramasawmy, K. Stout, L. Blunt, “Effect of secondary processing on EDM surfaces,” Surface Engineering, Vol. 16, pp. 501-505, 2000.
    23. H. Ramasawmy, L. Blunt, “3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces,” International Journal of Machine Tools & Manufacture, vol.42, pp. 567-574, 2002.
    24. H. Ramasawmy, L. Blunt, “3D surface characterisation of electropolished EDMed surface and quantitative assessment of process variables using Taguchi Methodology,” International Journal of Machine Tools & Manufacture, vol. 42, pp. 1129-1133, 2002.
    25. S. M. Yi, S. H. Jin, J. D. Lee, C. N. Chu, “Fabrication of a high-aspect-ratio stainless steel shadow mask and its application to pentacene thin-film transistors,” Journal of Micromechanics and microengineering, vol. 15, pp. 263-269, 2005.
    26. J. C. Hung, B. H. Yan, H. S. Liu and H. M. Chow, “Micro-holemachining using micro-EDM combined with electropolishing,” Journal of Micromechanics and Microengineering, vol. 16, pp. 1480-1486, 2006.
    27. T. Kurita, M. Hattori, “A study of EDM and ECM/ECM-lapping complex machining technology,” International Journal of Machine Tools & Manufacture, vol. 46, pp. 1804-1810, 2006.
    28. H. Ramasawmy, L. Blunt, “Investigation of the effect of electrochemical polishing on EDM surfaces,” International Journal of Advanced Manufacturing Technology, vol. 31, pp.1135-1147, 2007.
    29. 林明獻編著,矽晶圓半導體材料技術,全華科技圖書股份有限公司出版,民國89年3月。
    30. 吳坤齡,“界面活性劑與電泳輔助放電加工之研究”, 國立中央大學博士論文,2005。
    31. 黃仁聰,“線切割放電加工粗與精加工規劃及故障診斷專家系統之研發”, 國立臺灣大學博士論文,1998。
    32. A. Hascalyk, U. Caydas, “Experimental study of wire electrical discharge machining of AISI D5 tool steel,” Journal of Materials Processing Technology, vol. 148, pp. 362-367, 2004.
    33. K. Y. Kung, K. T. Chiang, “Modeling and analysis of machinability evaluation in the wire electrical discharge machining (WEDM) process of aluminum oxide-based ceramic,” Materials and Manufacturing Processes, vol. 23, pp. 241-250, 208.
    34. Y. C. Lin, Y. F. Chen, C. T. Lin, H. J. Tzeng, “Electrical discharge machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide,” Materials and Manufacturing Processes, vol. 23, pp. 391-399, 2008.
    35. M. Y. Ali, A. S. Mohammad, “Experimental study of conventional wire electrical discharge machining for microfabrication,” Materials and Manufacturing Processes, vol. 23, pp. 641- 645, 2008.
    36. S. C. Di, X. Y. Chu, D. B. Wei, Z. L. Wang, G. X. Chi, Y. Liu, “Analysis of kerf width in micro-WEDM,” International Journal of Machine Tools & Manufacture, vol. 49, pp. 788-792, 2009.
    37. H. Hocheng, Y. Sun, S. C. Lin, P. S. Kao, “A material removal analysis of electrochemical machining using flat-end cathode,” Journal of Materials Processing Technology, vol. 140, pp. 264-268, 2003.
    38. E. S. Lee, “Machining characteristics of the electropolishing of stainless steel (STS316L),” International Journal of Advanced Manufacturing Technology, vol. 16, pp. 591-599, 2000
    39. T. Hryniewicz, R. Rokicki, K. Rokosz, “Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field,” Surface & Coating Technology, vol. 202, pp. 1668-1673, 2008.
    40. T. Hryniewicz, R. Rokicki, K. Rokosz, “Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing,” Surface & Coatings Technology, vol. 203, pp. 1508-1511, 2009.
    41. P. S. Pa, “Magnetic assistance in cylinder-surfaces,” Materials and manufacturing processes, vol. 24, pp.819-823, 2009.
    42. P. S. Pa, “A super surface finish module by simultaneous influences from electromagnetic force and ultrasonic vibrations,” Materials and Manufacturing Processes, vol. 25, pp. 288-292, 2010.
    43. J. D. Kim, D. X. Jin, M. S. Choi, “Study on the effect of a magnetic field on an electrolytic finishing process,” International Journal of Machine Tools & Manufacture, vol. 37, pp. 401-408, 1997.
    44. J. C. Fang, Z. J. Jin, W. J. Xu, Y. Y. Shi, “Magnetic electrochemical finishing machining,” Journal of Materials Processing Technology, vol. 129, pp. 283-287, 2002.
    45. J. D. Kim, M. S. Choi, “Development of the magneto-electrolytic-abrasive polishing system (MEAPS) and finishing characteristics of a Cr-coated roller,” International Journal of Machine Tools & Manufacture, vol. 37, pp. 997-1006, 1997.
    46. 張裕祺,電化學加工,化工技術1 (5) (1993) 80-83---電化學應用
    47. G. H. Sedahmed, M. S. Abdo, M. A. Kamal, “A mass transfer study of the electropolishing of metals in mechanically agitated vessels,” Intetrnational Communications in Heat and Mass Transfer, vol. 28, pp. 257-265, 2001.
    48. J. F. Aebersold, P.A. Stadelmann, M. Matlosz, “A rotating disk electropolishing technique for TEM sample preparation,” Ultramicroscopy, vol. 62, pp. 157-169, 1996.
    49. A. A. Taha, “Study of the effects of ethylene glycol and glycerol on the rate of electropolishing of copper by rotating disc technique,” Anti-Corrosion Methods and Materials, vol. 47, pp. 94-104, 2000.
    50. T. Iida, H. Matsushima and Y. Fukunaka, “Water electrolysis under a magnetic field,” Journal of the Electrochemical Society, vol. 154, pp. E112-E115, 2007.
    51. H. Hocheng, P. S. Pa, “Continuous secondary ultrasonic electropolishing of an SKD61 cylindrical part,” International Advanced Manufacturing Technology, vol. 21, pp. 238-242, 2003.
    52. N. Eliaz, O. Nissan, “Innovative processes for electropolishing of medical devices made of stainless steels,” Journal of Biomedical Materials Research Part A, vol. 83A, pp. 546-557, 2007.

    QR CODE
    :::