跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓伯翰
PO-HAN CHO
論文名稱: 圓柱形PN 接面之電場幾何模型推導與模擬驗證
Geometric Model and Simulation Verification of Cylindrical PN Junction for Electric Field Characteristics
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 56
中文關鍵詞: 圓柱接面電場特性幾何模型
外文關鍵詞: Cylindrical, Electric Field Characteristics, Geometric Model
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們將採用簡單的幾何模型來推導圓柱形接面的電場解析公式,並運用開發的等效梯形模組,去模擬圓柱形接面之特性現象。而其中每個梯形等效電路,是由兩個三角形模組所組。接著藉由這些推導出的解析公式與模擬出的特性圖中,我們可以觀察並體會到圓柱形接面之電場特性與一些細部的現象呈現。另外也使得我們對於平面接面與圓柱接面有了更多的體認,而其中值得注意的是平面接面的電場為現性增加,而圓柱接面的電場為超線性增加,且在兩者內建電壓相同之情況下,超線性增加的圓柱接面會得到較高的最大電場值,也導致其崩潰電壓較低。


    In this thesis, we will use a simple geometric model to derive the analytic formulas of electric field and use the developed trapezoidal module to simulate the characteristics for cylindrical PN junction. The equivalent circuit of each trapezoid is composed of two triangular modules. Through these analytic formulas and simulated characteristic results, we can observe the characteristics of electric field and some detailed phenomena. In addition, we also have more understanding of the plane junction and the cylindrical junction. It is worth noting that the electric field of the plane junction is linear and the electric field of the cylindrical junction is superlinear. Since the built-in voltages of the two are the same, the cylindrical junction has a larger maximum electric field, which also results in a lower breakdown voltage.

    摘要......................................................................i Abstract..................................................................ii 目錄....................................................................iii 圖目錄...................................................................iv 表目錄...................................................................vi 第一章 簡介.........................................................1 第二章 圓柱形接面之理論物理與公式解析...............................4 2-1 半徑與接面電場之關係介紹.............................................4 2-2 PN 二極體之理論公式推導..............................................7 2-3 圓柱形PN 接面之理論電場解析公式推導..................................9 第三章 圓柱形PN 接面之二維電腦數值模擬驗證........................15 3-1 梯形網格解析與電阻驗證..............................................15 3-2 PN 二極體之特性模擬驗證.............................................19 3-3 二維圓柱形半導體架構之程式驗證......................................23 第四章 圓柱形半導體之延伸應用與觀念比較............................27 4-1 平面型與圓柱型P+N 接面之特性比較....................................27 4-2 圓柱形P+N 接面電場之參數影響........................................32 4-3 曲率與接面電場之關係探討............................................39 第五章 結論........................................................43 參考文獻.................................................................44

    [1] T. H. Lin,“Curvature Analytical Model of 2D PN Diode,” M. S. Thesis, Institute of EE,
    Nation Central University, Taiwan, Republic of China, 2013.
    [2] J. L. Xue,“PN Diode Equation and 2-D Device Simulation with Circular Junctions,” M. S.
    Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2011.
    [3] C. L. Wang,“Theoretical Analysis and Simulation of Cylindrical PN Diode for Breakdown
    Characteristics,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic
    of China, 2010.
    [4] J. Z. Wang,“Curvature Effect and Back Gate Bias Effect on Semiconductor Device
    Breakdown Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan,
    Republic of China, 2009.
    [5] H. Craig Casey, JR., Devices For Integrated Circuits :Silicon And III-V Compound
    Semiconductors; New York, John Wiley & Sons Inc., 1999.
    [6] J. He, et al.,“Equivalent function transformation: a semi‐empirical analytical Method for
    predicting the breakdown characteristics of cylindrical‐ and spherical‐abrupt PN junctions, ”
    Solid‐State Electronics, vol. 44, pp. 2171‐2176, Dec 2000.
    [7] D. V. Speeney, G. P. Carey, “Experimental Study of The Effect of Junction Curvature on
    Breakdown Voltage in Si,” Solid State Electronics, Vol 10, p177-182, 1967.
    [8] S. M. Sze, G. Gibbons, “Effect of Junction Curvature on Breakdown Voltage in
    Semiconductors,” Solid State Electronics, Vol 9, p831-845, 1966.
    [9] D. A. Neaman, “Semiconductor Physics and Devices: Basic Principles,” Chapter. 7,
    McGraw-Hill Companies, 2003.
    [10] J. K. Hsu,“Finding the internal vector from the plane equation in obtuse triangle element
    for 2D Semiconductor device simulation,” M. S. Thesis, Institute of EE, Nation Central
    University, Taiwan, Republic of China, 2016.
    [11] B. Iniguez, et al., “Two-dimensional analytical threshold voltage roll-off and subthreshold
    swing models for undoped cylindrical gate all around MOSFET,” Solid-State Electronics,
    vol. 50, pp. 805-812, May 2006.
    [12] K. Castellani-Coulie, et al., “Investigation of 30 nm gate-all-around MOSFET sensitivity
    to heavy ions: A 3-D simulation study,” Ieee Transactions on Nuclear Science, vol. 53,
    pp.1950-1958, Aug 2006.
    [13] C. Shen, L. T. Yang, G. Samudra, and Y. C. Yeo, “A new robust non-local algorithm for
    band-to-band tunneling simulation and its application to Tunnel-FET,” Solid-State
    Electronics., vol. 57, no. 1, pp. 23-30, Mar. 2011.
    [14] M. B. Patil, “New discretization scheme for two-dimensional semiconductor device
    simulation on triangular grid,” IEEE Trans, Computer-Aided Design of Integrated Circuits
    and Systems, vol. 17, no. 11, pp. 1160-1165, Nov. 1998.
    [15] L. Giraud, A. Marrocco, and J. C. Rioual, “Iterative versus direct parallel substructuring
    methods in semiconductor device modelling,” Numerical Linear Algebra with
    Applications., vol. 12, no. 1, pp. 33-53, Jun. 2004.
    [16] G. F. Carey, A. L. Pardhanani, and S. W. Bova, “Advanced Numerical Methods and
    Software Approaches for Semiconductor Device Simulation,” VLSI Design., vol. 10, no.4,
    pp. 391-414, 2000.

    QR CODE
    :::