| 研究生: |
李昱君 Yu-Chun Lee |
|---|---|
| 論文名稱: |
長區塊之相差空間調變 Long-Block Differential Spatial Modulation |
| 指導教授: | 魏瑞益 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 長區塊之相差空間調變 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在行動通訊的多天線技術中,相差空間調變是一種不需要通道估計和前導訊號的空間調變,而相差空間調變的架構為每個區塊的時間等同於傳送天線的數目,且一次只使用一根天線,並藉由選擇傳送天線來多傳額外的資料位元。在本論文中,我們提出了兩種長區塊之相差空間調變,亦即每個區塊的時間數量大於天線數量之架構,可藉由更多的天線排列選擇來傳更多資料位元。相差空間調變使用的低複雜度檢測器,必須針對所有天線排序去一一做比對,但若此法應用在本架構的情況下,將會變得相當地耗時費工。因此,本文針對長區塊的相差空間調變,提出更進一步改良的低複雜度檢測器,在只掉失些微錯誤性能的情況下,卻大幅降低檢測的複雜度。
Among various multi-antenna technologies of mobile communication, differential spatial modulation (DSM) is a kind of spatial modulation technique that does not need pilot symbols and channel estimation. The original architecture used by DSM is that the number of antennas and time must be the same,and each time only one antenna is activated to transmit signals. DSM transmits additional information bits by selecting antennas. In this thesis, we propose two long-block DSM schemes,whose quantity of time is longer than the number of antenna in each block. By doing so, more additional information bits can be transmitted. The low-complexity detector of DSM compares all antenna indexs one by one, and it is very complicated for the proposed long-block DSM scheme. Therefore, we propose a further improved low-complexity detector for the long-block DSM. This method would cause only a slight loss of error performance but a great reduction of detected time.
參考文獻
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun,”Spatial modulation, ” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, ”Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, ”Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, ”Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011.
[5] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, ”Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
[6] N. Ishikawa and S. Sugiura, ‘‘Unified differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
[7] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, ‘‘A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Process. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
[8] Z. Li, X. Cheng, S. Han, M. Wen, L.-Q. Yang, and B. Jiao, ‘‘A low-complexity optimal sphere decoder for differential spatial modulation,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.
[9] R. Y. Wei and T. Y. Lin, ‘‘Low-complexity differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356–359, Apr. 2019.
[10] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang, ‘‘A low-omplexity detection scheme for differential spatial modulation,’’ IEEE Commun. Lett., vol. 19, no. 9, pp. 1516–1519, Sep. 2015.
[11] N. Ishikawa and S. Sugiura, ‘‘Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,’’ IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1908–1920, Mar. 2017.
[12] B. M. Hochwald and W. Sweldens, ‘‘Differential unitary space-time modulation,’’ IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000.
[13] C. Gao, A. M. Haimovich, and D. Lao, ‘‘Multiple-symbol differential detection for MPSK space-time block codes: Decision metric and performance analysis,’’ IEEE Trans. Commun., vol. 54, no. 8, pp. 1502–1510, Aug. 2006.
[14] H. Leib, ‘‘Data-aided noncoherent demodulation of DPSK,’’ IEEE Trans. Commun., vol. 43, nos. 2–4, pp. 722–725, Feb. 1995.
[15] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[16] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,’’ IEEE Trans. Commun., vol. 65, no. 10, pp. 4260–4273, Oct. 2017.
[17] C. Xu, R. Rajashekar, N. Ishikawa, S. Sugiura, and L. Hanzo, ‘‘Single-RF index shift keying aided differential space–time block coding,’’ IEEE Trans. Signal Process., vol. 66, no. 3, pp. 773–788, Feb. 2018.
[18] C. Xu, P. Zhang, R. Rajashekar, N. Ishikawa, S. Sugiura, L. Wang, and L. Hanzo, ‘‘Finite-cardinality single-RF differential space-time modulation for improving the diversity-throughput tradeoff,’’ IEEE Trans. Commun., vol. 67, no. 1, pp. 318–335, Jan. 2019.
[19] B. L. Hughes, ‘‘Differential space-time modulation,’’ IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
[20] R. Y. Wei, “Low-complexity differential spatial modulation schemes for a lot of antennas,’’ IEEE Access, vol. 8, pp. 63725-63734, 2020.
[21] 蔡譯緯, “相差空間調變的進階結果,” 國立中央大學通訊工程研究所,碩士論文, 六月.2019
[22] 陳俊瑋, “相差空間調變的多區塊檢測,” 國立中央大學通訊工程研究所,碩士論文, 十二月.2020