| 研究生: |
康美祝 Mei-Chu Kuang |
|---|---|
| 論文名稱: |
MBR除氮系統特性之研究 The characteristic of MBR system in removal nitrogen |
| 指導教授: |
歐陽嶠暉
Chaio-Fuei Ouyang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | MBR 、水力停留時間 、硝化液迴流比 、污泥停留時間 、好氧脫硝菌 |
| 外文關鍵詞: | MBR, HRT, reflux ratio, SRT, aerobic denitrifier |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以薄膜生物程序(Membrane Bioreactor,MBR)為主探討其對COD、氮、磷之處理效能。MBR程序乃是結合傳統之活性污泥法與薄膜處理程序而形成,首先在傳統活性污泥處理法之好氧槽中,置入薄膜裝置,控制污泥停留時間(SRT)為10天、pH值在6.8~7.1、DO>5mg/L下,探討水力停留時間(HRT)分別為5、10、15、20小時下,對於COD、氮及磷之處理效果。由實驗結果發現,COD之去除率在94%以上,氨氮的去除率更高達100%,而磷的去除並沒有明顯的效果,而以HRT為15小時時,氮的去除效果最佳。
另於好氧槽前增置一個缺氧槽,控制HRT為15小時,其餘操作條件均相同下,探討不同的硝化液迴流比分別為0.5、1.5及2.5下,對於COD、氮及磷之處理效果,並探討其在不同迴流比下,其脫硝及硝化之情形。由實驗結果可知,在不同的硝化液迴流比下,MBR系統對於COD之去除率在95%以上,氨氮的去除效率高達99%以上,而對於磷的去除只有達25%,並無明顯的效果,出流水中的SS均介於2-5mg/l之間,可看出水質分離固體物之效率相當好。而於好氧槽前加入一缺氧槽後,對於硝酸鹽的去除率可看出有略微增加,其中以硝化液迴流比為1.5時除氮效果最好。
利用前面實驗所得之結果,將兩段式MBR程序控制於HRT=15小時、硝化液迴流比為1.5,而其餘控制條件均相同之情形下,探討不同之SRT分別為10天、20天及30天下,對於COD、氮、磷之處理效果,並進一步對各SRT進行活性污泥之菌相分析。結果發現兩段式MBR程序在不同SRT下,其對於COD、氮及磷之處理效果能相當良好且穩定,其中以SRT=30天時去除總氮效果最好,可高達81%。而在菌相分布上,在不同SRT下皆有Proteobacteria及Planctomycetales兩種菌群出現,且均發現好氧脫硝菌之存在。
The Membrane bioreactor (MBR) is the combination of the activated sludge process and the membrane technique process. With the effective filtrating function of the membrane unit, the suspended solid (SS) in the effluent of an MBR can be reduced to a very low concentration, hence eliminating the requirement of a secondary clarifier. This combination could further simplify the complicated operation requirements of the traditional wastewater secondary treatment facilities and is beneficial to the economic aspects of a treatment process for its less land demand.
In this study, we first surveyed the impact of different hydraulic retention time (HRT) on an MBR. With a fixed sludge retention time (SRT=10 days), pH value (6.8~7.1), dissolved oxygen concentration (DO=5mg/L) and varied HRT (5, 10, 15, 20 hours), the MBR removed influent ammonia-nitrogen (NH4+-N) and chemical oxygen demand (COD) with high efficiency (100% and 94% respectively), and the best treatment efficiency was obtained with an HRT equaled to15 hours. However, the MBR didn’t display a function of phosphorus removal.
To further increase the nitrogen removing efficiency of the MBR system, an anoxic tank was added in the upper stream of the aerobic MBR, which formed a two-stage MBR. With varied reflux ratio of the aerobic tank effluent to the influent (0.5, 1.5 and 2.0 respectively), the two-stage MBR removed COD and NH4+-N significantly, but the removal of phosphorus was not largely increased (efficiency =25%). The best COD and NH4+-N removing efficiency was obtained with the reflux ratio of 1.5.
Utilizing the optimized HRT and reflux ratio, we further tested the two-stage MBR system with different sludge retention time (SRT=10, 20 and 30 days). Results showed that the two-stage MBR performed stably and the total nitrogen removal efficiency could reach 81% with a SRT of 30 days. Moreover, 16S rDNA analysis of the system showed that bacteria belonged to Proteobacteria and Planctomycetale groups existed in the microbial community of the two-stage MBR reactor. We also found aerobic denitrifier at varied SRT.
Amann R.I., Ludwig W. and Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59(1),143-169.
Blackall L.L, Burrell P.C., Gwilliam H., Bradford D., Bond P.L.and Hugenholtz P.(1998) The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Wat. Sci. Technol. 37(4-5),451-454
Brindle K. and Stephenson T. (1996). The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng.49,601-610.
Bond P. L., Hugenholtz P., Keller J., and Blackall L. L. (1995). Bacterial community structures of phosphate removing and non-phosphate removing activated sludge from sequencing batch reactors. Appl. Environ. Microbiol., 61(5), 1910-1916.
Burrell P. C., Keller J. and Blackall L. L. (1998). Microbiology of a Nitrite-Oxidizing Bioreactor. Applied and Environmental Microbiology, 64(5), 1878-1883.
Chuang S.H., Ouyang C.F., Yuang H.C. and You S.J. (1997) Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and bilfilm. Wat. Sci. Technol. 37(4-5), 593-597
Cicek N., Franco J.P., Suidan M.T., Urbain V. and Manem J. (1999). Characterization and Comparison of a Membrane Bioreactor and a Conventional Activated-Sludge System in the Treatment of Wastewater Containing High-Molecular-Weight Compounds. Wat. Environ. Res. 71,64-70.
Côté p., Buisson H. and Praderie M. (1998). Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Wat. Sci. Tech. Vol. 38, No. 4-5, 437-442.
Côté p. and Thompson D. Wastewater treatment using membrane : the north American experience. (1999). IWA Conf. Membrane Technology in Environmental Management, Tokyo, 46-53.
Crocetti R. G., Hugenholtz P., Bond P. L., Schuler A., Keller J. Jenkins D., and Blackall L. L. (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for heir detection and quantitation. Appl. Environ. Microbiol., 66(3), 1175-1182.
Fan X. J., Urbain V., Qian T. and Manem J. (1996). Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Wat. Sci. Technol.34(1-2), 129-136.
Ghyoot W., and Verstraete W. (2000). Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res., 34, 205-215.
Hesselmann R. P. X., Werlen C., Hahn D., van der Meer R. and Zehnder A. J. B. (1999). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhnaced biological phosphate removal in activated sludge. Syst. Appl. Microbiol., 22, 454-465.
Holt G. J., Krieg R. N., Sneath H. P., Staley T. J., and Williams T. S. (1994). Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins, Maryland.
Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C. and Gillis M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum. and Rhizobium tianshanense to Mesorhizobium gen. nov. International Journal Systematic Bacteriology., 47, 895-898.
Jenkins D.(1992) Handout for the workshop of operation and control in activated sludge systems. Graduate Institute of Environment Engineering, National Central University.
Juretschko S., Loy A., Lehner A. and Wagner M. (2002). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol., 25, 84-99.
Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H. J., Osborn A. M. and Stolz A. (1999). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov.. International Journal of Systematic Bacteriology, 49, 887-897.
Livingston, A. G. (1994). Extractive membrane bioreactor: A new process technology for detoxifying chemical industry watewaters. J. Chem. Technol. Biotechnol. 60, 117-124.
Luxmy B. S., Nakajima F. and Yamamoto K. (1999). Analysis of bacterial community in membrane separation bioreactors by fluorescent in situ hybridization and denaturing gradient gel electrophoresis techniques. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 302-309.
Madigan T. M., Martinko J. M. and Parker J. (2000). Brock biology of microorganisms 9th : Prokaryotic diversuty : bacteria . Sourthern Illinois University Carbondale, Prentice Hall Tnternational, Inc., 453-544.
Manz W., Wagner M., Amann R. and Schleifer K.H. (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants., Water Res.28 (8) ,1715-1723.
Mitsui H., Gorlach K., Lee H.J., Hattori R. and Hattori T. (1997). Incubation time and media requirement of culturable bacteria from different phylogenetic group. J. of Microbial Methods, 30(2), 103-110.
Müller E.B., Stouthamber A. H., Versevsld H. W. and Eikelboom D. H. (1995). Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration. Wat. Res. 29, 1179-1189.
Murakami T., Usui J., Takamura K. and Yushikawa T. (1999). Application of immersed type membrane separation Proc. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 256-262.
Nandasena K. G., O’Hara G. W., Tiwari R. P.,Yates R. J. and Howieson J. G. (2001). Phylogenetic relationships of three bacterial strains isolated from the pasture legume Biserrula pelecinus L.. International Journal of Systematic and Evolutionary Microbiology. 51, 1983-1986.
Painter H. (1970) A Review of Literature on Inorganic Nitrogen Metabolism in Micro-Organisms, Wat. Res., 4(6): 393.
Rosenburger, S., Kraume M. and Szewzyk U. (1999). Operation of different membrane bioreactor experimental results and physiological state of the microorganisms. Proc. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 310-316.
Saiki R. K., Gelfand D. H., Stoffel S. J., Higuchi R., Horn G. T., Mullis K. B. and Erlich H. A.(1988). Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239 (4839), 487-491.
Snaidr J., Amann R., Huber I., Ludwig W., and Schleifer K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol., 63(7), 2884-2896.
Smith J. C., Di Gregorio D. and Talcott R. M. (1969). The use of membrane for activated sludge separation. 24th Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Indiana, U.S.A., 1300-1310.
Wand E. T., Van Berkum P., Sui X. H., Beyene D., Chen W. X. and Martínez-Romero E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soild and description of Mesorhizobium amorphae sp. nov.. International Journal of Systematic Bacteriology, 49, 51-65.
Yamaguchi S. and Yokoe M. (2000). A Novel Protein-Deamidating Enzyme from Chryseobacterium proteolyticun sp. nov., a Newly Isolated Bacterium from Soil. Applied and Environmental Microbiology, 66(8), 3337-3343.
Yoon S. H., Kim H. S., Park J. K. and Sung J. Y. (1999). Influence of important operation parameters of a membrane biological reactor. IWA Conf. Membrane Technology in Environmental Management, Tokyo. 278-285.
You S. J., Kaung M. C., Chen J. P., Ouyang C. F. (2001). The identification of microorganism diversity in an aerobic denitrification membrane bioreactor by molecular biotechnology. Proceedings Ⅰ of Asian Waterqual, First IWA Asia-Pacific Regional Conference, Fukuoka, Janpan. 165-170.
Zhang B. (1997). A Study on Microbial Activities and the Role of Predators in membrane Separation Activated Sludge Process. Ph. D. thesis, Department of Urban Engineering, University of Tokyo.
歐陽嶠暉,(2000)下水道工程學,長松出版社
康美祝、游勝傑、歐陽嶠暉,(2001) “薄膜生物反應槽(MBR)在廢水工程上之應用”,國立中央大學環境工程學刊,第七期,第9-18頁。