| 研究生: |
邱東茳 Dung-Jiang Chiou |
|---|---|
| 論文名稱: |
應用HHT頻譜於鋼結構房屋建築地震損傷之研究 Structural damage detection for benchmark buildings using the Hilbert-Huang transform |
| 指導教授: |
許文科
Wen-Ko Hsu 蔣偉寧 Wei-Ling Chiang 唐治平 Jhy-Pyng Tang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 242 |
| 中文關鍵詞: | 希爾伯特-黃轉換 、損傷指標 、層間變位角 、半功率帶寬法 |
| 外文關鍵詞: | HHT, inter-story drift, half-power bandwidth, Damage detection index |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有別於傳統上使用快速傅立葉轉換(Fast Fourier Transform, FFT)進行頻率域分析,本文藉由希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)之輔助,探討房屋結構模型受不同強度地震作用下,系統加速度頻率反應曲線之變化,並提出新的結構損傷指標,相當阻尼比之比值(RED),作為偵測結構安全與提供預警之參考。
本文區分二大主軸,第一部份應用SAP2000有限元素軟體建立房屋結構模型,進行數值模擬分析,藉以瞭解RED對於偵測結損傷之敏感度。第二部分再以國家地震中心提供之鋼結構標竿模型試驗數據(NCREE-99-002與NCREE-06-020)進行分析,探討RED對於真實結構損傷診斷之可行性。上述研究同時採用HHT與FFT作為分析工具,並比較結果之差異性。最後提出一快速損傷評估流程,作為鋼結構房屋建築健康診斷之參考。
研究成果顯示:
1、當桿件斷面勁度折減為原來之90%時,觀察HHT加速度頻譜反應曲線即能發現頻寬有增大現象,表示結構已經產生損傷,但相同結果卻無法由FFT頻譜得知。
2、由四跨門型構架之HHT頻譜分析結果得知,僅斷面勁度產生折減之桿件的阻尼比有所提高,其餘完整桿件之RED值則維持不變,顯示HHT頻譜對於偵測桿件損傷與否的敏感度甚高。
3、依具遲滯型勁度折減之構架分析結果顯示,當結構系統維持線彈性反應時,無論以FFT或HHT分析,顯著頻率位置皆無變化,阻尼比亦僅有極微小之改變,即RED近似於1。
4、而當結構系統進入反應非線性階段,觀察HHT頻譜可發現RED有隨PGA值提高呈現正向遞增之趨勢。但由FFT頻譜得知,須在地震規模相當大,即結構受損嚴重時,相當阻尼比才有明顯改變。
5、透過HHT頻譜得知,房屋結構模型最先發生桿件降伏處的樓層,其相當阻尼比增加幅度亦較其他樓層明顯,表示觀察RED之變化量能判斷結構產生降伏的樓層位置。
6、隨地震力持續提高,結構非線性反應愈趨顯著,由HHT頻譜可看出頂樓處之RED增大幅度遠大於其他樓層。因此,量取頂樓之加速度反應進行HHT分析便能瞭解結構物發生損害之時機。
7、由鋼結構數值模型及標竿模型之相當阻尼比與最大層間變位角關係曲線分析結果顯示,當系統之相當阻尼比<3%,即RED<1.5時,結構物屬於輕微損壞階段。而在1.5 RED 2.5之間,系統達到中度破壞。若結構之相當阻尼比超過5%,也就是RED>2.5,則建築物可能已經進入嚴重破壞階段。
8、本研究提出以HHT頻譜為計算基礎之鋼結構房屋建築損傷評估流程,具備簡單且有效的診斷模式,其頂樓加速度頻譜能即時反應結構體之損傷程度,若能進一步量取其他樓層與可能優先破壞位置之地震訊號,則更利於偵測出建築物構件局部損傷之位置與時機。
This study investigates the feasibility of detecting structural damage using the HHT method. A damage detection index, the ratio of equivalent damping ratio (RED) is proposed. The nonlinear SDOF and MDOF with various predominant frequency models are then constructed by using the SAP2000 program, while the adjusted PGA El Centro and Chi-Chi (TCU068) earthquakes are used as excitations. Next, the damage index using the Hilbert-Huang Transform (HHT) and the Fast Fourier Transform (FFT) methods are evaluated separately based on the acceleration responses to earthquakes. Based on an analysis of shaking table test data from benchmark models subjected to adjusted Kobe and El Centro earthquakes are also used to demonstrate the efficiency of damage index in the HHT spectra in detecting structural damage.
Results indicate that, when the response of the structure is in the elastic region, the RED value only slightly changes in both the HHT and the FFT spectra. Additionally, RED values estimated from the HHT spectra vs. the PGA values change incrementally when the structure response is nonlinear i.e., member yielding occurs, but not in the RED curve from the FFT spectra. Moreover, the RED value of the top floor changes more than those from the other floors. Furthermore, structural damage is detected only when using the acceleration response data from the top floor.
Therefore, the ratio of equivalent damping ratio, RED, estimated from the smoothed HHT spectra is an effective and sensitive damage index for detecting structural damage. Finally, an effective structural monitoring procedure is proposed to detect the structural damage when during earthquakes. Results of this study also demonstrate that the HHT is a powerful method in analyzing the nonlinear responses of steel structures to strong ground motions.
[1] Berman, Alex and Flannely, William G., 1971, “Theory of Incomplete Models of Dynamic Structures,” AIAA Journal, 9(8), pp. 1481-1487.
[2] Berman, A., 1984, “System Identification of Structural Dynamic Models - Theoretical and Practical Bounds,” AIAA paper 84-0929, pp. 123-129.
[3] Fissette, E. and Ibrahim, S., 1988, “Error Location and Updating of Analytical Dynamic Models Using a Force Balance Method,” Proc. 6th Int. Modal Analysis Conf., pp. 1063-1070.
[4] Ricles, J. M. and Kosmatka, J. B., 1992, “Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity,” AIAA Journal, 30(9), pp. 2310-2316.
[5] Baruh, H. and Ratin, S., 1993, “Damage Detection in Flexible Structures,” Joural of Sound and Vibration, 166(1), pp. 21-30.
[6] Zimmerman, D. C. and Kaouk, M., 1994, “Structural Damage Detection Using a Minimum Rank Update Theory,” Journal of Sound and Vibration and Acoustics, 116, pp. 222-231.
[7] Doeling, S. W., 1996, “Minimum-Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification,” AIAA Journal, 34(12), pp. 2615-2621.
[8] Hajela, P. and Soeiro, F. J., 1989, “Structural Damage Detection Based on Static and Modal Analysis,” AIAA Journal, 28(6), pp. 1110-1115.
[9] Guyan, R. J., 1965, “Reduction of Stiffness and Mass Matrices,” AIAA Journal, 3(2), pp. 380.
[10] Kidder, R. L., 1973, “Reduction of Structural Frequency Equations,” AIAA Journal, 11(6), pp. 892.
[11] O´Callahan, J. C., Avtabile, P., Madden, R. and Lieu, I.W., 1986 “An Efficient Method of Determining Rotational Degrees of Freedom From Analytical and Experimental Modal Data,” Fourth International Modal Analysis Conference, Los Angeles, California, pp. 50-58.
[12] Kammer, Daniel C., 1987, “Test-Analysis-Model Development Using an Exact Modal Reduction,” Journal of Modal Analysis, pp. 174-179.
[13] Kim, H. M. and Bartkowicz, T. J., 1993, “Damage Detection and Health Monitoring of Large Space Structures,” AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, Technical Papers. 6(A93-33876 13-39), pp. 3527-3533.
[14] Gordis, J. H., 1994, “An analysis of the Improved Reduced System (IRS) Model Reduction Procedure,” The International Journal of Analytical and Experimental Modal Analysis, 9(4), pp. 269-285.
[15] Kidder, R. L., 1973, “Reduction of Structural Frequency Equations,” AIAA Journal, 11(6), pp. 892.
[16] Brown, T., 1985, “A Unified Approach to the Identification of Dynamic Behaviour Using the Theory of Vector Spaces,” PhD Thesis, Bristol University.
[17] Press, W. H., Flannery, B. P. and Teukolsky, W. T. Vetterling, 1986, “Numerical Recipes,” the Art of Scientific Computing, pp. 86-89.
[18] Lipkins J. and Vandeurzen U., 1987, “The Use of Smoothing Techniques for Structural Modification Applications,” 12th Internation Modal Analysis Seminar, Leuven, Belgium.
[19] Lieven, N. A. J. and Ewins, D. J., 1988, “Correlation of Modeshapes, the Coordinate Modal Assurance Criterion (COMAC),” Proc. IMAC VI, pp.690.
[20] Gysin, H., 1990, “Comparison of Expansion Method for FE Modeling Error Localization,” Proc. 8th Int. Modal Analysis Conference.
[21] Levine-West, M. B., Milman, M. and Kissil, A., 1996, “Mode Shape Expansion Techniques for Prediction: Experimental Evaluation,” AIAA Journal, 34(4), pp. 821-829.
[22] Doebling, C. R. and M. B. Prime, 1998, “A Summary Review of Vibration-based Damage Identification Methods,” The Shock and Vibration Digest, 30(2), pp. 91-105.
[23] Pandey, M. Biswas and M. M. Samman, 1991, “Damage Detection from Changes in Curvature Mode Shapes,” Joural of Sound and Vibration, 45(2), pp. 321-332.
[24] Pandey, A. K. and Biswas, M., 1994, “Damage Detection in Structures Using Changes in Flexibility,” Journal of Sound Vibration, 169(1), pp. 3-17.
[25] Stubbs, J.-T. Kim and K. Topole, 1992, “An Efficient and Robust Algorithm for Damage Localization in Offshore Platforms,” Proceedings of the ASCE Tenth Structures Congress, pp. 543-546.
[26] Rytter, A., 1993, “Vibration based inspection of civil engineering structures,” PhD dissertation Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark.
[27] Lin, C. S., 1995, “Location of modeling errors using modal test data,” AIAA Journal, 28(9), pp. 1650-1654.
[28] Farrar, C. R., Doebling, S. W. and Duffey, T. A., 1999, “Vibration-based damage detection,” SD2000, Struct. Dyn. Forum.
[29] Aktan, E., Brown, D., Farrar, C., Helmicki, A., Hunt, V. and Yao, J., 1997, “Objective Global condition assessment”, Proceedings of SPIE-the international society for optical engineering, 3089, pp. 364.
[30] Doebling, S. W., Farrar, C. R., Prime, M. B. and Shevitz, D. W., 1996, “Damage identification and health monitoring of structural and mechanical system from changes in their characteristics: a literature review, ” Los Alamos National Laboratory Report No. LA-13070-MS, Los Alamos, NM.
[31] Doebling, S. W., Farrar, C. R. and Prime, M. B., 1998, “A summary review of vibration based damage identification method, ” Shock and Vibration Digest, 30(2), pp. 91-105.
[32] Salawu, O. S., 1997, “Detection of structural damage through changes in frequency: a review,” Engineering Structures, 19(9), pp. 718-723.
[33] Hielmstad, K. D. and Shin, S., 1997, “Damage detection and assessment of structures from static response,” Journal of Engineering Mechanics, 123, pp. 568-576.
[34] Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: I. Experiment,” Smart Materials and Structures, 7(5), pp. 704-719.
[35] Farrar, C. R. and Jauregui, D. A., 1998, “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study,” Smart Materials and Structures, 7(5), pp.720-731.
[36] Fanning, Paul J. and Boothby, Thomas E., 2001, “Three-dimensional modeling and full-scale testing of stone arch bridges,” Computers and Structures 79(29-30), pp. 2645-2662.
[37] Andrzej, S. Nowak and Maria, M. Szerszen, 1998, “Bridge load and resistance Models,” Engineering Structures 20(11), pp. 985-990.
[38] 郭昌宏, 1987,「多自由度結構系統的參數識別」,國立台灣大學土木工程究所碩士論文,台北市。
[39] 杜日泉, 1993, 「偵測結構參數改變之系統別」,國立台灣大學土木工程究所碩士論文,台北市。
[40] Zhao, J., DeWolf, J., and ASCE, fellow, 1999, “Sensitivity study for vibrational parameters used in damage detection,” Journal of Structural Engineering, 125, pp. 410-416.
[41] Ghobarah, A., Abou-Elfath, H. and Biddah, A., 1999, “Response-based damage assessment of structures,” Earthquake Engineering and Structural Dynamics, 28, pp. 79-104.
[42] Hu, N., Wang, X., Fukunaga, H., Yao, Z. H., Zhang, H. X., and Wu, Z. S., 2001, “Damage assessment of structures using modal test data,” International Journal of Solids and Structures, 38, pp. 3111-3126.
[43] Wang, X., Hu, N., Fukunaga, H. and Yao, Z. H., 2001, “Structural damage identification using static test data and changes in frequencies,” Engineering Structures, 23, pp. 610-621.
[44] Barroso, L. R. and Rodriguez, R., 2002, “Application of the damage index method to phase II of the analytical SHM benchmark problem,” 15th ASCE Engineering Mechanics Conference, Columbia University.
[45] Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W. and Nadler, B. R., 2003, “A review of structural health monitoring literature: 1996-2001,” Los Alamos National Laboratory Report No. LA-13976-MS, Los Alamos, NM.
[46] Lei, Y., Kiremidjian, A. S., Nair, K. K., Lynch, J. P., Law, K. H., Kenny, T. W., Carryer, E., and Kottapalli A., 2003, “Statistical damage detection using time series analysis on a structural health monitoring benchmark problem, ” in Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA, July, pp. 6–9.
[47] Lanata, F. and Grosso, A. D., 2006, “Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals, ” Institute of Physics Publishing Smart Materials Structures, 15(19), pp. 1811-1829.
[48] Zhanga, X., Wong, K. K. F. and Wang, Y., 2007, “Performance assessment of moment resisting frames during earthquakes based on the force analogy method,” Engineering Structures, 29, pp. 2792–2802.
[49] Wang, J. F., Lin, C. C., and Yen, S. M., 2007, “A story damage index of seismically-excited buildings based on modal frequency and mode shape,” Engineering Structures, 29, pp. 2143–2157.
[50] 羅俊雄,林裕家,許丁友,2007,「利用地震反應資料進行結構全域及局部性損害評估」,國家地震工程研究中心研究報告,NCREE-07-047。
[51] Masri, S. F., Nakamura, M., Chassiakos, A. G. and Caughey, T. K., 1996, “Neural network approach to detection of changes in structural parameters,” Journal of Engineering Mechanics, ASCE, 122(4), pp. 350-360.
[52] Huang, C. C. and Loh, C. H., 2001, “Nonlinear identification of dynamic systems using neural networks,” Computer-Aided Civil and Infrastructure Engineering, 16, pp. 28-41.
[53] Y. Lei, A. S. Kiremidjian, K. K. Nair, J. P. Lynch and K. H. Law, 2003, “Statistical Damage Detection Using Time Series Analysis on a Structural Health Monitoring Benchmark Problem,” Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, CA, USA, July, pp. 6-9.
[54] K. Krishnan Nair, Anne S. Kiremidjian and Kincho H. Law, 2006, “Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure,” Journal of Sound and Vibration, 291 pp. 349–368.
[55] Hae Young Noh, K. Krishnan Nair and Anne S. Kiremidjian, 2009, “Application of time series based damage detection algorithms to the benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan,” Smart Structures and Systems, 5(1), pp. 95-117.
[56] Cooley, J. W. and Tukey, J. W., 1965, “An algorithm for the machine calculation of complex Fourier series, ” Mathematics of Computation, 19, pp. 297–301.
[57] 胡昌華,等「基於MATLAB 的系統分析與設計—小波分析」,西安電子科技大學出版社,中國大陸, 1999.
[58] Cohen L., 1995, “Time–frequency analysis. 1st ed.,” NJ: Prentice-Hall.
[59] Haar, Alfred, 1910, “Zur Theorie der orthogonalen Funktionensysteme (German),” Mathematische Annalen 69(3), pp.331–371.
[60] Morlet. J., Arens G., Fourgeau I. and Giard, D., 1982, “Wave Propagation and Sampling Theory,” Geophysics, 47, pp. 203-236.
[61] Morlet, J., 1983, “Sampling Theory and Wave propagation,” NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, 1, pp. 233-261.
[62] Grossman, A. and Morlet, J., 1984, “Decompsotition of Hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal., 15(4), pp. 723-736.
[63] Meyer. Y., 1986, “Ondettes et Functions Splines,” Lectures given at the University of Torino, Italy.
[64] Meyer. Y., 1986, “Ondettes Functions Splines et Analyses Graduees,” Seminaire EDP, Ecole Polytechnique, Paris, France.
[65] Meyer. Y., 1993, “Wavelets Algorithms and Application,” Siam.
[66] Mallat. S. G., 1988, “A Theory for Multiresolution Signal Decomposition,” The Wave Representation. Comm. Pure Appl. Math, 41, pp. 674-693.
[67] I. Daubechies, 1992, “Ten Lectures on Wavelets,” SIAM, Philadelphia.
[68] Wu, Y. and Du, R., 1996, “Feature extraction and assessment using wavelet packets for monitoring of machining process,” Mechanical Systems and Signal Processing, 10, pp. 29-53.
[69] Staszewski, W. J., 1998, “Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform,” Journal of Sound and Vibration, 214(4), pp.639-658.
[70] Quan Wang and Xiaomin Deng, 1999, “Damage detection with spatial wavelets,” International Journal of Solids and Structures, 36, pp. 3443-3468.
[71] Hou, Z., Noori, M. and Amand, R. St., 2000, “Wavelet-based approach for structural damage detection,” Journal of Engineering Mechanics, 126(7), pp. 677-683.
[72] Yen, G. G. and Lin, K. C., 2000, “Wavelet packet feature extraction for vibration monitoring,” IEEE Transactions on Industrial Electronics, 47, pp. 650-667.
[73] Sun, Z. and Chang, C. C., 2002, “Structural damage assessment based on wavelet packet transform,” Journal of Structural Engineering, 128, pp. 1354-1361.
[74] Kim, H. and Melhem, H., 2002, “Fourier and wavelet analyses for fatigue assessment of concrete beams,” Experimental Mechanics, 43(2), pp. 131-140.
[75] Yam, L. H., Yan, Y. J. and Jiang, J. S., 2003, “Vibration-based damage detection for composite structures using wavelet transform and neural network identification,” Composite Structures, 60, pp. 403-412.
[76] Biswajit Basu, 2005, “Identification of stiffness degradation in structures using wavelet analysis,” Construction and Building Materials, 19, pp. 713–721.
[77] Rucka, M. and Wilde, K., 2006, “Application of continuous wavelet transform in vibration based damage detection method for beams and plates,” Sound and Vibration, 297, pp. 536-550.
[78] Ren, W.-X. and Sun, Z.-S., 2008, “Structural damage identification by using wavelet entropy,” Engineering Structures 30, pp.2840-2849.
[79] Gokdag, H. and Kopmaz, O., 2009, “A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms,” Journal of Sound and Vibration, 324, pp. 1158-1180.
[80] Nair, K. K. and Kiremidjian, A. S., 2009, “Derivation of a damage sensitive feature using the Haar wavelet transform,” Applied Mechanics, 76(6), pp. 1-9.
[81] Gokdag, H., 2010, “Wavelet-Based Damage Detection Method for Beam-Like structure,” Journal of Science, 23(3), pp. 339-349.
[82] Loh, C.H. and Lin, P.Y., 2004, “Structural health monitoring research at NCREE and NTU,” Columbia University, New York, USA.
[83] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu H. H, 1998, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995.
[84] Huang, N. E., Shen, Z., and Long, S. R., 1999, “A new view of nonlinear water waves: The Hilbert spectrum,” Annual. Review of Fluid Mechanics, 31, pp. 417–457.
[85] Yang, J. N., and Lei, Y., 2000a, “System identification of linear structures using Hilbert transform and empirical mode decomposition, ” Proc., 18th Int. Modal Analysis Conf.: A Conf. on Structural Dynamics, Society for Experimental Mech., Inc., Bethel, Conn., 1, pp. 213–219.
[86] Yang, J. N., and Lei, Y., 2000b, “Identification of civil structures with nonproportional damping, ” Proc. SPIE, 3988, pp. 284–294.
[87] 畢德成,「希伯特頻譜於地震資料之應用」,碩士論文,國立中央大學土木工程研究所碩士論文,民國89年。
[88] 顏嘉德,「希伯特轉換於時變頻率內涵之應用」,碩士論文,國立成功大學土木工程學系碩士論文,民國89年。
[89] 吳政憲,「希爾伯特阻尼頻譜於高樓損傷評估之應用」,碩士論文,國立中央大學土木工程研究所碩士論文,民國90年。
[90] 陳世國,「Hilbert Spectrum於結構工程上之應用」,碩士論文,中央大學土木工程系碩士論文,民國90年。
[91] 陳宏南,2001,「希爾伯特頻譜於橋梁非破壞檢測之應用」,國立中央大學土木工程研究所碩士論文,中壢市。
[92] Chin-Hsiung Loh, Tsu-Chiu Wu, and Norden E. Huang, 2001, “Application of the Empirical Mode Decomposition–Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses,” Bulletin of the Seismological Society of America, 91(5), pp. 1339–1357.
[93] Ray Ruichong Zhang, M. ASCE, Shuo Ma, Erdal Safak, M. ASCE, and Stephen Hartzell, 2003, “Hilbert-Huang Transform Analysis of Dynamic and Earthquake Motion Recordings,” J Eng Mech- ASCE / AUGUST, 129(8), pp. 861-875.
[94] Yang, J. N., Lei, Y., Pan, S., and Huang, N., 2003a, “Identification of linear structures based on Hilbert-Huang transform. Part I: Normal modes, ” Earthquake Eng. Struct. Dyn., 32(9), pp. 1443–1467.
[95] Yang, J. N., Lei, Y., Pan, S., and Huang, N., 2003b, “Identification of linear structures based on Hilbert-Huang transform. Part II: Complex modes, ” Earthquake Eng. Struct. Dyn., 32(10), pp. 1533–1554.
[96] Yang J. N., Lei Y, Lin S, Huang N., 2004, “Hilbert–Huang based approach for structural damage detection,” J Eng Mech-ASCE, 130(1), pp. 85–95.
[97] Silian Lin, Jann N. Yang and Li Zhou., 2005, “Damage identification of a benchmark building for structural health monitoring,” Smart Mater. Struct., 14, pp. 162–169.
[98] Norden E. Huang and Samuel S. P. Shen, 2005, “Hilbert-Huang Transform and Its Applications,” World Scientific Publishing Co., 9, pp. 305-334.
[99] Darryll Pines and Liming Salvino., 2006, “Structural health monitoring using empirical mode decomposition and the Hilbert phase,” Journal of Sound and Vibration, 294, pp. 97-124.
[100] Poon, C. W. and Chang, C. C., 2007, “Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes,” Smart Structures and Systems, 3(4), pp. 423-437.
[101] Kerschen, G., Vakakis, A. F., Lee, Y. S., McFarland, D. M. and Bergman, L. A., 2008, “Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics,” Journal of Vibration and Control, 14, pp. 77-105.
[102] Pai, P. F. and Palazotto, A. N., 2008, “HHT-based nonlinear signal processing method for parametric and nonparametric identification of dynamical systems,” Mechanical Sciences, 50, pp. 1619-1635.
[103] Wu Z. and Huang N. E., 2004, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Centre for Ocean-Land-Atmosphere Studies, Tech. Rep., No.173.
[104] Su S. C., Huang N. E., and Wen K. L., 2008, “A new spectral representation of strong motion earthquake data: Hilbert spectral analysis of Taipower building station, 1994~2006,” Proc., 5th Int. Conf. on Urban Earthquake Engineering, Tokyo, Japan.
[105] 黃志偉,2009,「應用改良式HHT與模糊迴歸法於橋梁結構安全檢測」,私立逢甲大學土木暨水利工程研究所博士論文,台中市。
[106] Lin, J. W. and Huang, C. W., 2009, “Hilbert-Huang Transform Based Noise Filtering for the Identification of Structural Systems,” Journal of Civil Engineering and Architecture, 3(3), pp. 1-10.
[107] Raufi, F., 2010, “Damage detection in moment frame building by using Hilbert-Huang transform,” Signal Processing Systems (ICSPS), 2nd International Conference, July, 3, pp. 634-637.
[108] Alvanitopoulos, P. F., Andreadis, I. and Elenas, A., 2010, “Interdependence between damage indices and ground motion parameters based on Hilbert–Huang transform,” Measurement Science and Technology, 21(2), pp. 025101-025114.
[109] Copson, E. T., 1967, “Asymptotic Expansions,” Cambridge University Press.
[110] Pandey, J. N., 1996, “The Hilbert transform of Schwartz distributions and applications,” New York : John Wiley.
[111] Gabor, D., 1946, “Theory of communication,” Proc. IEE, 93, pp. 429-457.
[112] Tichmarsh, E. C., 1948, “Introduction to the theory of Fourier Integrals,” Oxford University Press.
[113] Newland, D. E., 1993, “An introduction to Random Vibrations, Spectral & Wavelet Analysis,” John Wiley & Sons, Inc., New York.
[114] Dazin, P. G., 1992, “Nonlinear Systems,” Cambridge University Press, Cambridge.
[115] Long, S. R., Huang, N. E., Lung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E. and Yuan, Y., 1995, “The Hilbert Techniques : An alternate approach for non-steady time series analysis,” IEEE Geoscience Remote Sensing Soc. Lttr., 3, pp. 6-11.
[116] Whitham, G. B., 1975, “Linear and Nonlinear waves,” John Wiley, New York, NY..
[117] Chopra, A. K., 2001, “Earthquake Dynamics of Structures: Theory and Applications to Earthquake Engineering,” 2nd edn, Prentice Hall, New Jersey, pp. 83.
[118] Chou Ya-lun., 1975, “Statistical Analysis,” 2d ed. New York: Holt Rinehart and Winston, pp. 562–565.
[119] Wen, Y.K., 1976, “Method for random vibration of hysteretic system,” Journal of Engineering Mechanics – ASCE, 102(2), pp. 249-63.
[120] 葉士青,鄭橙標,羅俊雄,1999,「五層樓縮尺鋼結構振動台試驗分析報告」,國家地震工程研究中心研究報告,NCREE-99-002。
[121] 林沛暘,羅俊雄,游信源,吳紀宏,2006,「標竿鋼構樓房震動台試驗」,國家地震工程研究中心研究報告,NCREE-06-020。
[122] Applied Technology Council(ATC), 1996, “Seismic Evaluation and Retrofit of Concrete Buildings,” Vol. 1, ATC 40, Redwood City, CA.
[123] Federal Emergency Management Agency, 1997, “NEHRP Guidelines for the Seismic Rehabilitaion of Buildings,” FEMA-273, Building Seismic Safety Council, Washington D.C..
[124] KUSUNOKI KOICHI, and TESHIGAWARA MASAOMI, 2003, “A new acceleration integration method to develop a real-time residue seismic capacity evaluation system,” Journal of Structural and Construction Engineering, 569, pp. 119-126.