| 研究生: |
楊程光 Cheng-Kuang Yang |
|---|---|
| 論文名稱: |
電化學放電加工法應用於石英的精微加工研究 Study on Micro-Machining of Quartz by Using Electrochemical Discharge Machining |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 表面粗糙度 、接觸角 、電化學放電加工 、磁力 、微球狀電極 |
| 外文關鍵詞: | Micro-spherical Electrode, Surface Roughness, Electrochemical Discharge Machining, Contact Angle, Magnetic Effect |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石英具有壓電效應、化學穩定性良好等優異性質,因此廣泛被應用於微機電系統之關鍵零組件。但由於其硬脆特性,若以傳統之加工方式很難在效率與精度二者之間同時兼顧。電化學放電加工是以高溫熔融並且此高溫可加速蝕刻速率的非傳統加工方法,相當適合作為加工石英之製程技術。唯此製程技術中,仍然存在著許多有待釐清且改善的問題,其中氣泡於電極表面生成時的狀態不僅影響氣膜結構的緻密性,同時為影響放電火花效率的重要因素之一;並且氣膜受到氣泡不斷結合、脫離的影響下,使得氣膜處在此動態的環境中,穩定程度受到嚴重的考驗。有鑑於此,透過本論文的研究,逐步釐清、解析、並提供如何增加氣膜穩定性、加工效率的方法,以提升電化學放電加工之性能。
首先,由於不同電極材料的性質皆不相同,必須先針對不同電極材料去各別調整輸入電壓以得到各電極之轉折電壓。除此之外,為了能夠釐清氣泡貼覆於電極表面的狀態,應用不同粗糙度的電極表面進行測試,當電極表面粗糙度大而產生較大的接觸角,將增加成形於電極表面的氣膜厚度;在加工過程中,電極需能承受放電時的高溫,因此碳化鎢電極在連續加工50個微孔後,僅有端面有些微的損耗,而仍然不致於對加工精度造成影響。
另外,在電化學放電加工過程中,氣膜的穩定性及氣膜成形的型態為影響加工精度及加工效率相當重要的關鍵因素,為了增加氣膜的穩定性而提升加工精度,本研究以磁力的輔助提供另一方向的作用力(勞倫茲力),促使氣泡能快速的脫離電極表面,避免影響氣膜的穩定性。從實驗結果得知,在添加磁力後,加工後孔徑標準差的變異程度減少80.7%,而同時藉由磁力提供氣膜薄化的效果,加工後孔徑縮小達24.6%的改善幅度,明顯的提升加工的穩定性及加工精度。除了提升氣膜的穩定性之外,電化學放電加工於加工深度的限制也是受限於氣膜成形的型態,若以一般常用的圓柱電極應用於加工時,由於圓柱電極的外形其直徑均相同,因此氣膜將填滿電極與工件之間的加工間隙,而阻礙電解液的循環。本研究為了徹底解決此問題,將製作具有多段式直徑之微球狀電極,利用多段式直徑的電極外形,當前端球狀外形(直徑150 μm)進行加工時,後端(直徑100 μm)包覆於電極表面的氣膜厚度將小於加工後的微孔直徑,可避免氣膜阻礙電解液的循環,影響加工效率。從實驗結果得知,在深度500 μm的加工下,加工時間及加工後孔徑與圓柱電極相比較,加工時間縮短了83%,加工後孔徑減少65%,可大幅度的提升加工效率,且在進行通孔加工時,微孔入出口及孔壁皆擁有更佳的形狀精度。
Quartz is the critical material used in MEMS due to its beneficial properties, such as piezo-electric effect and stable chemical properties. However, it is difficult to machine between the efficiency and accuracy using conventional methods. Electrochemical discharge machining (ECDM) is an emerging non-traditional machining process that involves high-temperature melting assisted by accelerated chemical etching. However, the electrochemical reaction affects the coalesce status of gas film in ECDM. The structure of gas film is in turn affected by efficiency and accuracy. Therefore, this research uses different methods to improve the stability of gas film and machining efficiency in ECDM.
First, discharge energy varies with tool material of electrode. Different tool materials have different transition voltages, which determine the gas film formation, and hence the hole diameter and average current achieved. Otherwise, Surface roughness of tool electrode is key determinant of gas film formation. Poor surface roughness increases contact angle of gas bubbles adhered on electrode surface, causing them to coalesce and form a thicker gas film, resulting in largest hole diameter machined. During machining process, there is no significant tool wear observed after repeated gravity-feed machining of 50 micro-holes by using tungsten carbide tool electrode.
In ECDM process, the stability and formation of gas film is in turn affected by the machining efficiency and quality. In order to improve the stability of gas film structure, this study attempt to use the magnetic effect keeps bubbles move quickly form the tool electrode. According to the experimental results, the stability of standard deviation in hole diameter was increased by 80.7% while hole diameter was also decreased by 24.6%. Besides, both machining efficiency and accuracy were found to worse with increasing machining depth. In particular, the machining gap between the electrode and micro-hole is completely filled up by the gas film when using the cylindrical tool electrode. To solve these problem, this study proposed using a tool electrode with a spherical end whose diameter (150 μm) is larger than that of its cylindrical body (100 μm). In other words, during machining by the spherical end, the thickness of gas film formed on the surface of electrode body would be smaller than that of the micro-hole machined. Comparison between machining depth of 500 μm achieved by conventional cylindrical tool electrode and the proposed spherical tool electrode shows that machining time was reduced by 83% while hole diameter was also decreased by 65%.
1. C.S. Taylor, “Investigation on anode discharge inelectrolysis of melted sodium chloride”, Trans.
Electro-chemical Society, Vol.47, pp. 301-305, 1925.
2. H. H. Kellog, “The interface observation of poles in water electrolysis”, Journal of Electrochemical Society, Vol. 97, pp.133-137, 1950.
3. H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. CIRP. Vo. 16, pp. 415-9, 1968.
4. A.B.M. Khayry and J.A. Mcgeouth, “Modelling of electrochemical arc machining by use of dynamic data systems”, Proceedings of 25th International Machine Tool Design and Research Conference, pp. 321-328, 1985.
5. Y.P. Singh, V.K. Jain, P. Kumar, D.D. Agrawal,“Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process”, Journal of Materials Processing Technology, Vol. 58, pp. 24-31, 1996.
6. K. Allesu, A. Ghosh and M.K. Muju, “Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass”, Euro Journal of Mechanical Engineering, Vol. 36, pp. 202-207, 1992.
7. H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of pyrex glass devices–trajectory control”, Internal Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven) Vol. 2, pp. 435-438, 2002.
8. I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical dischargemachining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
9. I. Basak and A. Ghosh, “Mechanism of material removal
in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 71, pp. 350-9, 1997.
10.V. K. Jain, P. M. Dixit and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 165-86, 1999.
11.C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM) ”, Key Engineering Material. Vol. 196, pp. 149-66, 2001.
12.R. Kulkarni and G.K. Sharan, “An experimental study of discharge mechanism in electrochemical discharge machining”, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1121–1127, 2002.
13.V. Fascio, H.H. Langen, H. Bleuler, Ch. Comninellis,“Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5, pp. 203–207, 2003.
14.T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical dischargemachining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol. 149, pp. 499–503, 2004.
15.R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-85, 2006.
16.M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
17.V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318, 1995.
18.B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-54, 1999.
19.H. J. Lim, Y. M. Lim, S. M. Kim and Y. K. Kwak, “Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials”, Proc. SPIE, Vol. 4416, pp. 348-53, 2001.
20.H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of Pyrex glass devices - trajectory control”, International Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-8, 2002.
21.W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol. 149, pp. 363–369, 2004.
22.R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. H. Mandin and G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering. 15 (2005) S268-75.
23.D. J. Kim, Y Ahn, S. H. Lee and Y. K. Kin, “Voltage pulse frequency and duty ratio effects in and electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools & Manufacture, Vol. 46 pp. 1064-1067, 2006.
24.R. Wüthrich, B. Despont, P. Maillard and H Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”, Journal of Micromechanics and Microengineering, Vol. 16, N28, 2006.
25.C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 2044-2050, 2006.
26.W. Jonathan, J. Amol, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 403-409, 2006.
27.R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46 , pp. 828–835, 2006.
28.Z.P, Zheng, H.C. Su, F.Y. Huang and B.H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
29.Sanjay K. Chak, and P. Venkateswara Rao, “Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply”, International Journal of Machine Tools & Manufacture, Vol. 47 pp. 2061–2070, 2007.
30.M.S. Han, B.K. Min, and S.J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.
31.M. Mousa, A. Allagui, H. D. Ng and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling”, Journal of Micromechanics and Microengineering, Vo.19, 015010, 2009.
32.Z.P. Zheng, J.K. Lin, F.Y. Huang and B.H. Yan,“Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, 025014, 2009.
33.M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
34.X.D. Cao, B.H. Kim and C.N. Chu, “Micro-structuring of glass with features less than 100_m by electrochemical discharge machining”, Precision Engineering, Vol. 33, pp. 459–465, 2009.
35.V. Fascio, R. Wüthrich, H. Bleuler, “ Spark assisted chemical engraving in the light of electrochemistry”, Electrochimica Acta, Vol. 49, pp.3997-4003, 2004.
36.R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, “A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 1891–6, 2006.
37.Y.S. Liao and W.Y. Peng, “Study of hole-machining on Pyrex wafer by electrochemical discharge machining (ECDM) ”, Material Science Forum Vol. 507 , pp. 1207–1212, 2006.
38.N.K. Adam, “Use of the term Young''s Equation'' for contact angles”, Nature Vol. 180, pp. 809-810, 1957.
39.S.S. Latthe, H. Hirashima and A.V. Rao, “TEOS based water repellent silica films obtained by a co-precursor sol–gel method”, Smart Material Structure, Vol. 18, 095017, 2009.
40.C.P. Cheng, K.L. Wu, C.C. Mai, Y.S. Hsu and B.H. Yan, “Magnetic field-assisted electrochemical discharge machining”, Journal of Micromechanics and Microengineering. Vol.20, 075019 (7pp), 2010.
41.W. Jonathan and J. Amol, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering. Vol.17, pp. 403-409, 2006.
42.E.S. Mairi, Z. Michele, A-H. Mustafa and M. Hywel,“Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system”, Journal of Micromechanics and Microengineering. Vol.17, pp. S189-S196, 2007.
43.J.C. Hung, S.C. Lien, J.K. Lin, F.Y. Huang and B.H. Yan, “Fabrication of a micro-spherical tool in EDM combined with Ni-diamond co-deposition”, Journal of Micromechanics and Microengineering, Vol. 18, 045010(10pp), 2008.
44.Y. Sheu, “Micro-spherical probes machining by EDM”, Journal of Micromechanics and Microengineering, Vol. 15, pp. 185–189, 2005.
45.S. Ali, S. Hinduja, J. Atkinson and M. Pandya, “Shaped tube electrochemical drilling of good quality holes”, CIRP Ann-Manufacture Technology, Vol. 58, pp. 185-188, 2009.