| 研究生: |
詹家郡 Chia-Chun Chan |
|---|---|
| 論文名稱: |
有缺陷的石墨烯的水接觸角滯後現象 Contact angle hysteresis on defective graphene |
| 指導教授: |
溫偉源
Wei-Yen Woon |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 石墨烯 、接觸角 、拉曼光譜 、接觸角滯後 |
| 外文關鍵詞: | graphene, contact angle, Raman, contact angle hysteresis |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是一種由單層的碳原子組成的,真正的二維材料。碳原子排列成
六角形結構,像蜂巢般的連接成一個完整的平面。他擁有極特殊的特性讓科
學研究者們驚艷。舉例來說,石墨烯擁有極高的載子遷移率和機械強度,並
且它只吸收 2.7%的光,所以對肉眼來說幾乎是透明的不可見的,這些特性
使它非常適合用以作為保護層。為了達到這樣的應用,石墨烯的表面特性就
顯得非常重要,其中表面濕潤性是最普遍的表面能量測方式,也就是透過測
量水接觸角,了解它本身表面能和水的比較。然而直至目前為止,關於石墨
烯表面水接觸角的研究並沒有一致的結論,極大和極小的水接觸角都曾被實
驗和理論計算得出。在這些研究中,化學氣象沉積製造的石墨烯是最常被用
來量測水接觸角的,然而這種石墨烯不可避免的含有一些缺陷,例如結晶邊
界、皺褶或者破洞,包括成長和轉移過程都可能產生這些缺陷。這些缺陷對
表面接觸角有嚴重的影響,但卻並沒有被完整的討論過。
在本研究中,含有極少缺陷的石墨烯被人為添加了不同種類的缺陷,用
以測量這些缺陷對水接觸角的影響,分別採用結構型的缺陷和化學類的缺陷。
另外,相較於靜態接觸角,動態接觸角含有更多的物理意義,並且對區分不
同缺陷影響有許多幫助,因此在本研究中前進接觸角和退後接觸角皆被量測
並比較,希望能對石墨烯的表面研究有一些貢獻。
Graphene, a real 2-dimension material composed of one layer of carbon atom
with honeycomb-like lattice, impressed scientist by its special properties. For
example, graphene has extremely high carrier mobility and mechanical strength
due to the sp2 structure. Furthermore, graphene only absorbs 2.7% of light and is
almost transparent to eye and hence graphene is appropriate to be a protective
coating layer. To be a protective coating layer, more surface properties of graphene
need to be fully understood. However, scientists have not reached an agreement at
some properties, for example, the wetting property, or water contact angle. In the
past decade, expert groups all around the world have extensively reported both
experimental and theoretical results, which are somehow inconsistent. In these
wettability measurements, CVD graphene was most used because pristine
graphene was too crumbled and rGO had too much oxygen and organic group
remained. However, unavoidable defects, i.e. grain boundaries, wrinkles and holes,
were also created in CVD and transfer process as well. These defects affected
results of contact angle measurement but did not receive much concern because
defect was inevitable in graphene. Fortunately, contact angle hysteresis provides a
remarkable solution.
[1] 1 A K GeimK. S. Novoselov 1* S. V. Morozov,2 D. Jiang,1 Y.
Zhang,1 S. V. Dubonos,2 I. V. Grigorieva,1 A. A. Firsov2, “Electric Field Effect
in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. October, pp. 666–
670, 2004.
[2] Y.Su, V. G.Kravets, S. L.Wong, J.Waters, A. K.Geim, andR. R.Nair,
“Impermeable barrier films and protective coatings based on reduced graphene
oxide,” Nat. Commun., vol. 5, pp. 1–5, 2014.
[3] V.Berry, “Impermeability of graphene and its applications,” Carbon
N. Y., vol. 62, no. May, pp. 1–10, 2013.
[4] S.Chen et al., “Oxidation resistance of graphene-coated Cu and Cu/Ni
alloy,” ACS Nano, vol. 5, no. 2, pp. 1321–1327, 2011.
-63-
[5] W. A.deHeer et al., “Epitaxial graphene,” Solid State Commun., vol.
143, no. 1–2, pp. 92–100, 2007.
[6] S.Shivaraman, M. V. S.Chandrashekhar, J. J.Boeckl, andM.
G.Spencer, “Thickness estimation of epitaxial graphene on sic using attenuation
of substrate raman intensity,” J. Electron. Mater., vol. 38, no. 6, pp. 725–730, 2009.
[7] P. K.Nayak, C. J.Hsu, S. C.Wang, J. C.Sung, andJ. L.Huang,
“Graphene coated Ni films: A protective coating,” Thin Solid Films, vol. 529, pp.
312–316, 2013.
[8] K.Qi, Y.Sun, H.Duan, andX.Guo, A corrosion-protective coating
based on a solution-processable polymer-grafted graphene oxide nanocomposite,
vol. 98. Elsevier Ltd., 2015.
[9] D.Prasai, J. C.Tuberquia, R. R.Harl, G. K.Jennings, andK. I.Bolotin,
“Graphene: Corrosion-inhibiting coating,” ACS Nano, vol. 6, no. 2, pp. 1102–1108,
2012.
[10] R. K.Singh Raman et al., “Protecting copper from electrochemical
degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045,
2012.
[11] Z.Peng, R.Yang, M. A.Kim, L.Li, andH.Liu, “Influence of O 2 , H 2
O and airborne hydrocarbons on the properties of selected 2D materials,” RSC
-64-
Adv., vol. 7, no. 43, pp. 27048–27057, 2017.
[12] C. J.Wu, Y. F.Li, W. Y.Woon, Y. J.Sheng, andH. K.Tsao, “Contact
Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oilinfused Graphite Surfaces,” Appl. Surf. Sci., vol. 385, pp. 153–161, 2016.
[13] A. I.Aria, P. R.Kidambi, R. S.Weatherup, L.Xiao, J. A.Williams,
andS.Hofmann, “Time Evolution of the Wettability of Supported Graphene under
Ambient Air Exposure,” J. Phys. Chem. C, vol. 120, no. 4, pp. 2215–2224, 2016.
[14] C. J.Shih, M. S.Strano, andD.Blankschtein, “Wetting translucency of
graphene,” Nature Materials, vol. 12, no. 10. Nature Publishing Group, pp. 866–
869, 2013.
[15] R.Raj, S. C.Maroo, andE. N.Wang, “Wettability of graphene,” Nano
Lett., vol. 13, no. 4, pp. 1509–1515, 2013.
[16] Z.Li et al., “Effect of airborne contaminants on the wettability of
supported graphene and graphite,” Nat. Mater., vol. 12, no. 10, pp. 925–931, 2013.
[17] X.Li, L.Li, Y.Wang, H.Li, andX.Bian, “Wetting and interfacial
properties of water on the defective graphene,” J. Phys. Chem. C, vol. 117, no. 27,
pp. 14106–14112, 2013.
[18] J.Rafiee et al., “Wetting transparency of graphene,” Nat. Mater., vol.
11, no. 3, pp. 217–222, 2012.
-65-
[19] D.Öner andT. J.McCarthy, “Ultrahydrophobic surfaces. Effects of
topography length scales on wettability,” Langmuir, vol. 16, no. 20, pp. 7777–
7782, 2000.
[20] L.Gao andT. J.McCarthy, “Contact angle hysteresis explained.,”
Langmuir, vol. 22, no. 14, pp. 6234–6237, 2006.
[21] L.Gao andT. J.McCarthy, “How Wenzel and Cassie were wrong,”
Langmuir, vol. 23, no. 7, pp. 3762–3765, 2007.
[22] D.Guan, Y. J.Wang, E.Charlaix, andP.Tong, “Asymmetric and
Speed-Dependent Capillary Force Hysteresis and Relaxation of a Suddenly
Stopped Moving Contact Line,” Phys. Rev. Lett., vol. 116, no. 6, p. 066102, 2016.
[23] K.Sun et al., “Nanostructured Surface with Tunable Contact Angle
Hysteresis for Constructing in Vitro Tumor Model,” J. Nanomater., vol. 2016, pp.
1–6, 2016.
[24] A.Kozbial, C.Trouba, H.Liu, andL.Li, “Characterize the intrinsic
water wettability of graphite with contact angle measurement: effect of defects on
the static and dynamic contact angles,” Langmuir, p. acs.langmuir.6b04193, 2017.
[25] C.Lee, X.Wei, J. W.Kysar, andJ.Hone, “Measurement of the Elastic
Properties and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol.
321, no. July, pp. 385–388, 2008.
-66-
[26] X.Tan, J.Wu, K.Zhang, X.Peng, L.Sun, andJ.Zhong,
“Nanoindentation models and Young’s modulus of monolayer graphene: A
molecular dynamics study,” Appl. Phys. Lett., vol. 102, no. 7, 2013.
[27] Y.Gao et al., “Ultrahard carbon film from epitaxial two-layer
graphene,” Nat. Nanotechnol., vol. 13, no. 2, pp. 133–138, 2018.
[28] C.-C.Chan, W.-L.Chung, andW.-Y.Woon, “Nucleation and growth
dynamics of graphene on oxygen exposed copper substrate,” Carbon N. Y., vol.
135, pp. 118–124, 2018.
[29] S.Wang, H.Hibino, S.Suzuki, andH.Yamamoto, “Atmospheric
Pressure Chemical Vapor Deposition Growth of Millimeter-Scale SingleCrystalline Graphene on the Copper Surface with a Native Oxide Layer,” Chem.
Mater., vol. 28, no. 14, pp. 4893–4900, 2016.
[30] X.Li et al., “Graphene films with large domain size by a two-step
chemical vapor deposition process,” Nano Lett., vol. 10, no. 11, pp. 4328–4334,
2010.
[31] L.Liu, M.Qing, Y.Wang, andS.Chen, “Defects in Graphene:
Generation, Healing, and Their Effects on the Properties of Graphene: A Review,”
J. Mater. Sci. Technol., vol. 31, no. 6, pp. 599–606, 2015.
[32] J. C.Meyer, C.Kisielowski, R.Erni, M. D.Rossell, M. F.Crommie,
-67-
andA.Zettl, “Direct Imaging of Lattice Atoms and Topological Defects in
Graphene Membranes - Nano Letters (ACS Publications),” vol. 12, 2018.
[33] C. J.Shih et al., “Breakdown in the wetting transparency of graphene,”
Phys. Rev. Lett., vol. 109, no. 17, pp. 1–5, 2012.
[34] D.Kim, N. M.Pugno, M. J.Buehler, andS.Ryu, “Solving the
Controversy on the Wetting Transparency of Graphene,” Nat. Publ. Gr., pp. 1–9,
2015.
[35] B.Ramos-Alvarado, S.Kumar, andG. P.Peterson, “On the wettability
transparency of graphene-coated silicon surfaces,” J. Chem. Phys., vol. 144, no. 1,
2016.
[36] D.Parobek andH.Liu, “Wettability of graphene,” 2D Mater., vol. 2,
no. 3, p. 032001, Jun.2015.
[37] X.Zhang, S.Wan, J.Pu, L.Wang, andX.Liu, “Highly hydrophobic and
adhesive performance of graphene films,” J. Mater. Chem., vol. 21, no. 33, p.
12251, 2011.
[38] C. W.Extrand, “Contact angles and hysteresis on surfaces with
chemically heterogeneous islands,” Langmuir, vol. 19, no. 9, pp. 3793–3796, 2003.
[39] M.Callies andD.Quéré, “On water repellency,” Soft Matter, vol. 1, no.
1, p. 55, 2005.
-68-
[40] L.Zhu, Y.Feng, X.Ye, andZ.Zhou, “Tuning wettability and getting
superhydrophobic surface by controlling surface roughness with well-designed
microstructures,” Sensors Actuators, A Phys., vol. 130–131, no. SPEC. ISS., pp.
595–600, 2006.
[41] C.Dorrer, “Advancing and Receding Motion of Droplets on
Ultrahydrophobic Post Surfaces,” no. 4, pp. 7652–7657, 2006.
[42] B. M. L.Koch, A.Amirfazli, andJ. A. W.Elliott, “Modeling and
Measurement of Contact Angle Hysteresis on Textured High-Contact-Angle
Surfaces,” 2014.
[43] C.Priest, T. W. J.Albrecht, R.Sedev, andJ.Ralston, “Asymmetric
Wetting Hysteresis on Hydrophobic Microstructured Surfaces,” vol. 25, no. 29,
pp. 5655–5660, 2009.
[44] V. A.Online, “The effect of drop size on contact angle measurements
of superhydrophobic surfaces,” pp. 1197–1203, 2014.
[45] H. Y.Erbil, “The debate on the dependence of apparent contact angles
on drop contact area or three-phase contact line : A review,” Surf. Sci. Rep., vol.
69, no. 4, pp. 325–365, 2014.
[46] S.Qiao, S.Li, Q.Li, B.Li, K.Liu, andX. Q.Feng, “Friction of Droplets
Sliding on Microstructured Superhydrophobic Surfaces,” Langmuir, vol. 33, no.
-69-
47, pp. 13480–13489, 2017.
[47] C. W.Extrand andY.Kumagai, “Liquid Drops on an Inclined Plane:
The Relation between Contact Angles, Drop Shape, and Retentive Force,” J.
Colloid Interface Sci., vol. 170, no. 2, pp. 515–521, Mar.1995.
[48] H. B.Eral, D. M.Augustine, M. H. G.Duits, andF.Mugele,
“Suppressing the coffee stain effect: How to control colloidal self-assembly in
evaporating drops using electrowetting,” Soft Matter, vol. 7, no. 10, pp. 4954–
4958, 2011.
[49] A. C.Ferrari andD. M.Basko, “Raman spectroscopy as a versatile tool
for studying the properties of graphene,” Nat. Nanotechnol., vol. 8, no. 4, pp. 235–
246, 2013.
[50] R.Beams, L.Gustavo Cançado, andL.Novotny, “Raman
characterization of defects and dopants in graphene,” J. Phys. Condens. Matter,
vol. 27, no. 8, 2015.
[51] L. M.Malard, M. A.Pimenta, G.Dresselhaus, andM. S.Dresselhaus,
“Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
[52] L. G.Cançado et al., “Quantifying Defects in Graphene via Raman
Spectroscopy at Different Excitation Energies,” Nano Lett., vol. 11, no. 8, pp.
3190–3196, Aug.2011.
-70-
[53] R.Sharma, N.Chadha, andP.Saini, “Determination of defect density,
crystallite size and number of graphene layers in graphene analogues using X-ray
diffraction and Raman spectroscopy,” Indian J. Pure Appl. Phys., vol. 55,
May2017.
[54] H. H.Kim, S. K.Lee, S. G.Lee, E.Lee, andK.Cho, “Wetting-Assisted
Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary
Substrates over a Wide Range of Surface Energies,” Adv. Funct. Mater., vol. 26,
no. 13, pp. 2070–2077, Apr.2016.
[55] J. K.Bal, S.Kundu, andS.Hazra, “Hydrophobic to hydrophilic
transition of HF-treated Si surface during Langmuir-Blodgett film deposition,”
Chem. Phys. Lett., vol. 500, no. 1–3, pp. 90–95, 2010.
[56] S. W.Schmucker, C. D.Cress, J. C.Culbertson, J. W.Beeman, O.
D.Dubon, andJ. T.Robinson, “Raman signature of defected twisted bilayer
graphene,” Carbon N. Y., vol. 93, pp. 250–257, 2015