| 研究生: |
黃逸隆 Yi-Lung Huang |
|---|---|
| 論文名稱: |
即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究 The study of optimal transmission for real-time FGS videos over WLAN |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 效率 、傳輸 、頻寬 、無線區域網路 、最佳封包長度 |
| 外文關鍵詞: | Gilbert Model, bandwidth utilization, packetization, optimal transmission, WLAN, MPEG 4, FGS |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著多媒體應用快速普及與多媒體資料編解碼技術成熟,加上無線網路蓬勃發展,多媒體資料在無線區域網路傳輸將是一個不可避免的趨勢。當封包在具有高錯誤機率的無線網路傳輸時,封包長度過小將使得封包檔頭的額外負荷提高,封包長度過大亦使封包發生錯誤機率提高,兩者皆會降低頻寬的使用效率。此外,在視訊編碼的過程中,不同型態的視訊封包具有不同重要性,若一視同仁地直接傳輸於無線網路中,將使得多媒體品質遭受嚴重的影響。
在本論文中,根據上述問題提出一套在無線區域網路下具有延遲限制的視訊封包最佳傳輸機制。本論文首先依據無線網路的傳送現況、封包檔頭的額外負荷、輪詢排程延遲、傳輸延遲、以及使用人數等因素,利用數學分析而得到最佳的封包長度。以此最佳封包長度為基礎,再針對MPEG-4 FGS特性以及視訊封包重要性差異,利用具優先等級的自動重送機制提出一套非對稱式視訊封包保護機制。本論文成果同時適用於所有無線區域網路,並且同時適用於IPv6以及IPv4網路層協定架構。模擬結果顯示,在IPv4/IPv6 IEEE 802.11 b/a/g等六種網路環境中,利用本論文所決定的封包長度傳輸於十種不同錯誤狀況時,均能達到最大頻寬使用率;此外,相較於其他固定封包長度進行傳輸,視訊品質亦有效地提升約1~2 dB。
Real-time streaming videos over IEEE 802.11 wireless networks are full of potential due to the great progress of digital compression and wireless network technologies. However, the delivery of video data with a large packet size may result in a high packet error rate on the error-prone channel of WLAN. On the other hand, using a small packet size may also increase the header overhead. This is a tradeoff between the packet error rate and header overhead. Additionally, considering the video encoding process, various video frames with different types have the distinct influence to the received video quality. An equal error protection to all video packets in the wireless network will degrade the video quality significantly.
Therefore, this paper proposes an integrated optimal transmission strategy for delivering the real-time video data over WLANs. The proposed strategy first develops a mathematic closed form of the optimal packet size for achieving the maximum bandwidth utilization. The analyses are accomplished based on the current error situation, transmission overhead, scheduling delay, transmission delay, and the number of connections. Moreover, using the calculated optimal packet size, a prioritized ARQ mechanism is proposed for providing the unequal error protection to the FGS video frames with different significances. The analyses show that, the proposed strategy can be applied to both IPv4 and IPv6 networks and any type of 802.11 WLANs. Furthermore, with the combination of ten error patterns and three video sequences, simulation results reveal that the video transmission in IPv6/IPv4 IEEE 802.11b/a/g wireless networks can achieve the maximum bandwidth utilization while increasing the received PSNR up to 2dB by using the proposed strateg
[1] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Standard, IEEE, Aug. 1999.
[2] ISO/IEC JTC1/SC29/WG11, “Information Technology-Coding ofAudio-Visual Objects, Part 1: System, Part 2: Visual, Part 3: Audio,” FCD 14496, Dec. 1998.
[3] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Modelversion 18.0,” N3908, Jan. 2001.
[4] ISO/IEC JTC1/SC29/WG11, “Fine Granularity Scalability Using Bit-Plane Coding of DCT Coefficients,” M4204, Dec. 1998.
[5] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE trans. on Circuits and Syst. Video Technol, vol.11, no.3, pp.301-317, Mar. 2001.
[6] M. Schwartz, “Telecommunication Networks: Protocols, Modeling and Analysis,” Addision-Wesley, pp. 119-135, Mar. 1987.
[7] A. Doufexi, D. Redmill, D. Bull and A. Nix, “MPEG-2 Video Transmission Using the HiperLAN/2 WLAN Standard,” IEEE Trans. Consumer Electron, vol. 47, no. 3, pp. 354-363, Aug. 2001.
[8] Q. Li and M. van der Schaar, “Providing Adaptive QoS to Layered Video over Wireless Local Area Networks through Real-Time Retry Limit Adaptation,” IEEE Trans. Multimedia, Apr. 2004.
[9] E. Modiano, “Data link protocols for LDR MILSTAR communications,” Lincoln Laboratory, Communications Division Internal Memorandum, Oct. 1994.
[10] E. Modiano, “An adaptive Algorithm for Optimizing The Packet Size Used in Wireless ARQ Protocols,” Wireless Network, pp. 279-286, May 1999.
[11] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,” IEEE Trans. Networking, vol. 4, no. 3, pp. 328-333, Jun. 1996.
[12] 林勤偉, “視訊隨選網路上的視訊訊務描述與管理,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十一年六月.
[13] S. S. Kanhere and H. Sethu, “On the Latency Bound of Deficit Round Robin,” in Proc. IEEE International Conference on Computer Communications and Networks, pp. 548-553, Oct. 2002.
[14] I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-Resilient Coding in JPEG-2000 and MPEG-4,” IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 899-914, Jun. 2000.
[15] AVT Working Group, H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 1889, Jan. 1996.
[16] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata, “RTP Payload Format for MPEG-4 Audio/Visual Streams,” RFC 3016, Nov. 2000.
[17] J. van der Meer, Philips Electronics, D. Mackie, V. Swaminathan, D. Singer, P. Gentric, “RTP Payload Format for Transport of MPEG-4 Elementary Streams,” draft-ietf-avt-mpeg4-simple-07, Feb. 2003.
[18] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[19] F.L. Leannec and G.M. Guillemot, “Error Resilient Video Transmission Over the Internet,” in SPIE Proceeding Visual Communications and Image Processing (VCIP’99), Jan. 1999.
[20] T. Turletti and C. Huitema, “RTP payload format for H.261 video streams,” RFC 2032, Oct. 1996.
[21] C. Zhu, “RTP payload format for H.263 video streams,” RFC 2190, Sept. 1997.
[22] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.
[23] K. Nicholsand K. Poduri, “An Expedited Forwarding PHB,” RFC 2598, Jun. 1999.
[24] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” RFC 2597, Jun. 1999.
[25] 曾毓婷, “支援ATM之IEEE 802.11多重擷取層協定,” 國立臺灣大學電信工程學研究所碩士論文, 中華民國八十九年六月.
[26] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer Extension in the 2.4 GHz Band,” Standard, IEEE, Sep. 1999.
[27] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,”Standard, IEEE, Sep. 1999.
[28] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band,”Standard, IEEE, Jun. 2003.
[29] IEEE 802.11, “Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS),”Draft 6.0, IEEE, Nov. 2003.
[30] 黃能富 著, “區域網路與高速網路,” 維科出版社, 中華民國八十七年六月.
[31] J.Y Yeh and C. Chen, “Support of Multimedia Services with the IEEE 802.11 MAC Protocol,” in Communications, 2002. ICC 2002. IEEE International Conference, vol. 1, pp. 600-604, May 2002.
[32] S. Choi, J. del Prado, N Sai Shankar, and S. Mangold, “IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation,” in Communications, 2003. ICC 2003. IEEE International Conference, vol. 2, pp. 1151-1156, May 2003.
[33] (2003, Jul.). IEEE 802.11g - The New Mainstream Wireless LAN Standard, Document 802.11g-WP104-R. [Online]. Available: http://www.54g.org
[34] M. Chen and G. Wei, “A novel hybrid ARQ algorithm for real-time video transport over wireless LAN,” on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings, vol. 3, pp.2426 – 2430, Sep. 2003.
[35] J.Takahashi, H.Tode, and K.Murakami, “QoS Enhancement Methods for MPEG Video Transmission on the Internet,” IEICE Trans. Commun., vol. E85-B, no.5, pp. 1002-1011, May 2002.
[36] Yang Xiao and Jon Rosdahl, “Throughput Analysis for IEEE 802.11a Higher Data Rates,” IEEE 802.11 Planetary Meeting, Document Submission: IEEE 802.11-02-138r0, St. Louis, Mar. 2002.
[37] 陳紹偉, “視訊封包封裝與調適性自動重送於無線區域網路之研究,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十二年六月.
[38] C. Jiao, L. Schwiebert, and B. Xu, “On Modeling the Packet Error Statistics in Bursty Channels,” IEEE Conference on Local Computer Networks (LCN''02), Nov. 2002.
[39] E.N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell System Technical Journal, pp. 1253-1266, Sep. 1960.
[40] J.R.Yee, E.J.Weldon, “Evaluation of the performance of error correcting codes on a Gilbert channel,” IEEE Trans. Commun., vol. 43, no 8, pp. 2316-2323, Aug. 1995.
[41] H.D.Robert, “Hybrid ARQ Schemes for Point to Multipoint Communication Over Nonstationary Broadcast Channels,” IEEE Trans. Commun., vol. 41, no 9, pp. 1379-1387, Sep. 1993.
[42] E. Gelenbe and G. Pujolle, translated by J.C.C. Nelson, “Introduction to Queueing Networks,” John Wiley & Sons, pp. 168-171, Dec. 1987.
[43] Y. Shan and A. Zakhor, “Cross Layer Techniques For Adaptive Video Streaming Over Wireless Network,” in International Conference on Multimedia and Expo, pp. 277-280, Aug. 2002.
[44] Y.Q. Shi and H. Sun, “Image and Video Compression for Multimedia Engineering,” CRC Press LLC, 2000.