| 研究生: |
薛光博 Kuang-Po Hsueh |
|---|---|
| 論文名稱: |
砷化鎵場效電晶體表面氧離子佈植和自我校準技術之研究 GaAs MESFET with Surface Oxygen Implantation and Self-Aligned Technology |
| 指導教授: |
辛裕明
Yue-Ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 離子佈植 、自我校準技術 、砷化鎵 、金屬半導體場效電晶體 |
| 外文關鍵詞: | Implantation, Self-Aligned Technology, GaAs, MESFET |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1)元件表面氧離子佈植的研究:
利用離子佈植和活化條件的不同,建構了三種不同結構的場效電晶體:(1) SiBe結構;(2) OSiBe結構;(3) O/SiBe結構。在這三種結構中,利用表面氧離子佈植所形成的高電阻區來改善元件特性,如崩潰電壓、生命週期、電流之頻率效應等,其中以OSiBe結構的崩潰電壓最高。而在元件直流和高頻特性上,三種結構上並無明顯差異:轉移電導(GM)在115∼140mS/mm之間;ft的平均值在7∼9GHz之間,fmax的平均值在38∼40GHz之間,這些結果也由電晶體等效模擬所萃取出的參數值得到印證。
(2)自我校準技術的研究:
以SiBe結構為基礎,再加上離子佈植自我校準技術所建構出的電晶體。這結構主要是利用有邊牆(side walls)的閘極當光罩,來定義高濃度矽離子的佈植區域。由於有高濃度的矽離子在源極和汲極處,所以元件的歐姆接觸電阻較SiBe結構小,膝蓋電壓(knee voltage)降低到只有1.5V。這個結果也利用電晶體等效模擬所萃取出的參數值來得到印證。
〔1〕V. A. Vashchenko, J. B Martynov, V. F. Sinkevitch, and A. S. Tager, “Electrical Current Instability at Gate Breakdown in GaAs MESFET,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 43, NO. 12, 1996.
〔2〕For a discussion on ion implantation in silicon, see, for example. T. E. Seidel, “Ion Implantation,” in S. M. Sze, Ed., VLSI Technology, McGraw-Hill, New York, 1983.
〔3〕I. Brodie and J. J. Muray, The Physics of Microfabrication, Plenum, New York, 1982.
〔4〕S. M. Sze, “Semiconductor Devices: Physics and Technology,” Chap. 10, John Wiley & Sons, 1985.
〔5〕M. T. Robinson, and O. S. Oen, Applied Physics Letter, vil. 2, pp. 30, 1963.
〔6〕L. Pauling and R. Hayward, “The Architecture of Molecules,” W. H. Freeman, San Francisco, 1964.
〔7〕R. A. Moline, J. Applied Physics, vol. 42, pp. 3553, 1973.
〔8〕R. G. Wilson, J. Applied Physics, vol.52, pp. 3985, 1985.
〔9〕S. Wolf, Silicon Processing for the VLSI Era, Vol. 1, Ch. 9, Lattice Press, 1986.
〔10〕C. A. Mead:“Schottky Barrier Gate Field Effect Transistor,” Proc. IEEE, 54, pp.307-308, 1966.
〔11〕M. M. Ahmed, “Optimization of Active Channel Thickness of mm-Wavelength GaAs MESFETs by Using a Nonlinear I-V Model” IEEE TRANSACTIONS ON ELECTRONIC DEVICES, VOL. 47, NO. 2, FEBRUARY 2000.
〔12〕J. H. Magerlein, D. J. Webb, A. Callegari, and J. D. Feder, “Characterization of GaAs self-aligned refractory-gate metal-semiconductor field-effect transistor (MESFET) integrated circuits,” J. Appl. Phys. 61(8), 15 April 1987.
〔13〕K. Nishimura, K. Onodera, S. Aoyama, M. Tokumitsu, and K. Yamasaki, “High-Performance 0.1- m-Self-Aligned-Gate GaAs MESFET Technology,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 11, NOVEMBER 1997.
〔14〕B. E. Maile, “Fabrication Limits of Nanometer T and G Gates: Theory and Experiment,” Journal Vaccum Science and Technology B, Vol. 11, No. 6, p.2502, 1993.
〔15〕S. J. Pearton, “Ion Implantation for Isolation of Ⅲ-Ⅴ Semiconductors,” Materials Science Reports, 4(1990), p.313-367.
〔16〕S. R. Wilson, Solid State Technology, June 1985, p.185.
〔17〕M. B. Dutt, R. Nath, R. Kumar, M. N. Sen and V Kumar, “Co-Implantation of Si and Be in SI GaAs for Improved Device Performance,” Solid-State Electronics, Vol. 42, No. 11, pp. 1905-1910, 1998.
〔18〕N. Braslau, “Alloyed Ohmic Contact to GaAs,” Journal of Vaccum Science & Technology B, Vol. 19, No. 3, 1981.
〔19〕M. Heiblum, M. I. Nathan, and C. A. Chang, “Characteristics of AuGeNi Ohmic Contact to GaAs,” Solid State Electronics, Vol. 11, No. 6, p.2505, 1993.
〔20〕S. J. Lee and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor,” Solid-state Electron, Vol. 28, p.659-668, 1985.
〔21〕Dieter K. Schroder, Semiconductor Material and Device Characterization, Wiley-Interscience, 1990.
〔22〕R. T. Tung, “Electron Transport of Inhomongeneous Schottky Barrier,” Appl. Phys. Lett. 58, 2821-2823, 1991.
〔23〕C. R. Crowell, J. C. Sarace and S. M. Sze, “Tungsten-Semiconductor Schottky-Barrier Diodes,” Trans. Met Soc. AIME, 233, 478, 1965.
〔24〕H. Furukawa, K. Tateoka, K. Miyatsuji, A. Sugimura, and D. Ueda, “A Novel GaAs Power MESFET with Low Distortion Characteristics Employing Semi-Insulating Setback Layer Under the Gate,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 43, NO. 2, FEBRUARY 1996.
〔25〕Ralph Williams, “Modern GaAs Processing Methods,” ARTECH HOUSE, INC., 1990.
〔26〕J. M. Golio, “Microwave MESFET and HEMTs,” ARTECH HOUSE, INC., 1991.
〔27〕S. M. Sze, “Physics of Semiconductor Devices,” Chap. 6, John Wiley & Sons, 1985.
〔28〕G. Dambrine, A. Cappy, F. Heliodore, E. Playez, “A Now Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory and Tech, Vol. 36, No. 7, p1151, 1998.