| 研究生: |
李兆修 Chao-Hsiu Li |
|---|---|
| 論文名稱: |
低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究 Microstructure and mechanical properties of low density dual-phase Al-rich high entropy alloys |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 高熵合金 、低密度 、雙相 、富鋁 、固溶 |
| 外文關鍵詞: | high entropy alloys, low density, dual-phase, Al-rich, solid solution |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在設計中低密度高熵合金之成分,探討Al Ti Cr Mn V 各個元素對於此合金系統的微結構、熱穩定和機械性質等影響。為設計密度低於5 g/cm3 的低密度合金,以Al為主要成分,配合高熵合金之設計參數規範,加入Ti Cr Mn V 四種元素,以不同比例添加至四元及五元合金。
經XRD微結構分析得知AlTiCrMn、AlTiCrMnV系列合金皆可成為BCC加FCC雙相固溶體,根據合金比例不同,其硬度落在250至500 Hv,其中以Al50(TiCrMn)45V5具有最佳的機械性質表現,其硬度值為355Hv,藉由SEM影像分析計算其相比例隨著Ti Cr Mn的變化及由EDS分析雙相中的元素分別含量之結果可詳知Ti為FCC穩定劑,Cr Mn V為BCC穩定劑,此外發現添加V之後,在400至1000度之間有優異的相熱穩定性,更進一步得知最佳的均質化溫度為800°C。在壓縮測試中,Al50(TiCrMn)45V5擁有最大的壓縮強度為1900MPa,降伏強度為900MPa,壓縮延性為32%。
This study aims to design the high entropy alloy with low density. Investigate the effect of each element of Al Ti Cr Mn V on the microstructure, thermal stability and mechanical properties, etc. To reach the goal of alloy density less than 5 g/cm3, aluminum was designated as the main element and follows with the design specification of high entropy alloys to add titanium, chromium, manganese and vanadium to from the quaternary alloy or quinary alloys.
The XRD results show that AlTiCrMn and AlTiCrMnV series alloys can form dual-phase solid solution (BCC and FCC). The hardness varies from 250 to 500 Hv according to the different alloy compositions. Additionally, we can figure out the effect of Ti Cr Mn additive on BCC and FCC by phase proportion calculation from SEM image analyses as well as the semiquantitative analysis by EDS. Titanium is regarded as FCC stabilizer and the elements of chromium, manganese and vanadium are regarded within BCC stabilizer. Moreover, the addition of vanadium can increase the thermal stability of phase in 400 to 1000°C. The optimum homogenization temperature is 800°C. Al50(TiCrMn)45V5 show the best mechanical properties in compression test, 900MPa of yield strength, 1900Mpa of ultimate strength , and 32% plastic strain.
1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), pp.299-303. (2004).
2. Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh and H. C. Shih. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), pp.2257-2279. (2005).
3. Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh and T. Duval. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11), pp.2679-2699. (2005).
4. C. Y. Cheng, Y. C. Yang, Y. Z. Zhong, Y. Y. Chen, T. Hsu and J. W. Yeh. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21(6), pp.299-311. (2017).
5. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Materials Park, OH: ASM International. (1990).
6. ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys. Materials Park: ASM International. (1990).
7. X. Yang, Y. Zhang and P. K. Liaw. Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 36, pp.292-298. (2012).
8. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle and C. F. Woodward. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509(20), pp.6043-6048. (2011).
9. L. Lilensten, J. P. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot. New structure in refractory high-entropy alloys. Materials Letters, 132, pp.123-125. (2014).
10. C. R. LaRosa, M. Shih, C. Varvenne, and M. Ghazisaeidi. Solid solution strengthening theories of high-entropy alloys. Materials Characterization, 151, pp.310-317. (2019).
11. J. Tu, L. Liu, Y. Dou, C. Huang, L. Tan, L. Hu and Z. Zhou. Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy. Materials Science And Engineering: A, 737, pp.9-17. (2018).
12. K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science And Engineering: A, 648, pp.183-192. (2015).
13. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72-73, pp.5-8. (2014).
14. J. W. Yeh. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648. (2006).
15. A. Takeuchi and A. Inoue. Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304-306, pp.446-451. (2001).
16. A. R. Miedema, P. F. de Châtel and F. R. de Boer. Cohesion in alloys — fundamentals of a semi-empirical model. Physica B+C, 100(1), pp.1-28. (1980).
17. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538. (2008).
18. X. Yang and Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), pp.233-238. (2012).
19. J. W. Yeh. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648. (2006).
20. J. W. Yeh. 高熵合金的發展. 華岡工程學報, (27), pp.1-18. (2011).
21. D. Gaskell. Introduction to the thermodynamics of materials. 3rd ed. Washington: Taylor & Francis, pp.80-84. (1995).
22. R. Swalin. Thermodynamics of solids. 2nd ed. New York: Wiley, pp.35-41. (1972).
23. K. Y. Tsai, M. H. Tsai and J. W. Yeh. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), pp.4887-4897. (2013).
24. J. M. Wu, S. J. Lin, J. W. Yeh, S. Chen, Y. S. Huang and H. C. Chen. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), pp.513-519. (2006).
25. C. J. Tong, M. R. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun and S. Y. Chang. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(5), pp.1263-1271. (2005).
26. Y. C. Liao. (2017). 中低密度高熵合金之合金設計與其微結構變化之研究. 國立中央大學.
27. N. D. Stepanov, N. Y. Yurchenko, D. V. Skibin, M. A. Tikhonovsky and G. A. Salishchev. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal Of Alloys And Compounds, 652, pp.266-280. (2015).
28. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw. Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), pp.333. (2016)
29. R. Song, L. J. Wei, C. X. Yang and S. J. Wu. Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness. Journal Of Alloys And Compounds, 744, pp.552-560. (2018).
30. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe and C. C. Tasan. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), pp.227-230. (2016).
31. R. Li, J. C. Gao and K. Fan. Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum, 686, pp.235-241. (2011).
32. Y. Jia, S. Wu, X. Ma and G. Wang. Novel Ultralight-Weight Complex Concentrated Alloys with High Strength. Materials, 12(7), pp.1136. (2019).
33. R. Li, J. C. Gao and K. Fan. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Materials Science Forum, 650, pp.265-271. (2010).
34. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw. Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), pp.333. (2016).
35. L. Y. Chen, A. T. Qiu, L. J. Liu, M. Jiang, X. G. Lu and C. H. Li. Thermodynamic modeling of the Ti–Al–Cr ternary system. Journal Of Alloys And Compounds, 509(5), pp.1936-1946. (2011).
36. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu and Y. Yang. High-entropy alloy: challenges and prospects. Materials Today, 19(6), pp.349-362. (2016).
37. L. Liu, J. B. Zhu, L. Li, J. C. Li and Q. Jiang. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Materials & Design, 44, pp.223-227. (2013).
38. S. GUO and C. T. LIU. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress In Natural Science: Materials International, 21(6), pp.433-446. (2011).
39. D. B. Miracle and O. N. Senkov. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, pp.448-511. (2017).
40. M. H. Tsai and J. W. Yeh. High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), pp.107-123. (2014).