跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅偉宸
Wei-Chen Luo
論文名稱: 主動式相位控制調諧質量阻尼器之研發與實驗驗證
指導教授: 賴勇安
Yong-An Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 201
中文關鍵詞: 調諧質量阻尼器主動控制相位控制能量流理論振動台實驗結構即時控制
外文關鍵詞: Tuned mass damper, Active control, Phase control, Power flow theory, Shaking table experiment, Structural real-time control
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對主動式調諧質量阻尼器(ATMD),創新提出相位控制之主動控制律,且由結構回饋之量測值不同,分為「主動式相位控制律-結構位移回饋」(PCD)與「主動式相位控制律-結構絕對加速度回饋」(PCA),從而研發出主動式相位控制調諧質量阻尼器(PC-ATMD),並以單自由度結構加裝PC-ATMD案例進行各項值數值模擬,探討其減振效益與特性,最後以單自由度構架試體振動台實驗進行驗證。本研究所提出之主動式相位控制調諧質量阻尼器(PC-ATMD),是於調諧質量阻尼器(TMD)與結構間施加控制力,其可即時調整調諧質量阻尼器之運動軌跡,使調諧質量阻尼器盡量保持與結構有 度相位差,因此調諧質量阻尼器將有最大之能量流(Power Flow),而有最佳之減振效果,且可避免TMD吸收之能量又傳回結構。研究結果表明,無論由頻率反應函數、動力歷時分析或振動台實驗皆可得出,PC-ATMD具有優異之減振效果,可有效降低地震力作用下之結構位移與加速度反應,且遠優於傳統被動式TMD。而與全狀態回饋之線性二次調節控制器(LQR)相比,PC-ATMD之減振效果與所需控制力皆可媲美,但量測數量可大幅減少,不需全狀態回饋;如為結構位移回饋之PCD-ATMD,僅需量測質量塊之相對速度及結構位移;如為結構絕對加速度回饋之PCA-ATMD,僅需量測質量塊之相對速度及結構絕對加速度。另外,主動控制實行時須確保系統之穩定,由系統穩定性分析可以得知,PCD-ATMD與PCA-ATMD皆為穩定可控之系統,且兩者之回饋增益參數對減振效果影響並不敏感,顯示本控制律具有良好之強健性。


    The present study aims at proposing innovative phase control methodologies for the active tuned mass damper (ATMD). The phase control active tuned mass damper (PC-ATMD) is first developed. According to the difference of measurement feedback, the phase control algorithm has two different types, phase control - displacement feedback (PCD) and phase control - abs. acceleration feedback (PCA). The essential of the phase control algorithm is to apply the control force between the tuned mass damper (TMD) and the structure to adjust the trajectory of the TMD in real time, so that the TMD can maintain a phase lag of 90 degrees with the structure as much as possible. Therefore, the TMD will have the maximum power flow and the best performance of vibration reduction. Moreover, the proposed phase control algorithm can also prevent the energy absorbed by the TMD from flowing back to the structure. To demonstrate the effectiveness of the proposed phase control algorithm, a single-degree-of-freedom structure equipped with an ATMD is investigated by numerical analysis and verified by shaking table experiments. The results show that the performance of vibration reduction and the control force requirement of PC-ATMD are as well as LQR-ATMD(linear-quadratic regulator). Besides, PC-ATMD doesn't need full state feedback. For instance, PCD-ATMD only needs to measure the relative velocity of TMD and structural displacement and PCA-ATMD only needs to measure the relative velocity of TMD and structural absolute acceleration. In addition, the system stability analysis shows that both PCD-ATMD and PCA-ATMD are stable systems. Furthermore, the feedback gain parameters are not sensitive to the vibration reduction, showing that the phase control algorithm has remarkable robustness.

    摘 要 ....................................... I ABSTRACT....................................... II 目 錄 ....................................... III 表目錄 ....................................... VII 圖目錄 ....................................... IX 第一章 緒論................................... 1 1.1 研究背景與動機.......................... 1 1.2 文獻回顧................................ 2 1.3 研究內容................................ 5 第二章 主動式調諧質量阻尼器之相位控制理論........ 7 2.1 相位控制之概念與原理..................... 7 2.2 結構加裝主動式調諧質量阻尼器之動力系統.... 8 2.3 主動式相位控制律推導-結構位移回饋........ 10 2.4 相位控制律之參數最佳化................... 12 2.5 主動式相位控制律-結構絕對加速度回饋...... 13 2.6 相位控制流程............................ 15 第三章 結構加裝ATMD之數值模擬................... 21 3.1 地震歷時數值模擬........................ 21 3.1.1 高科技廠房結構加裝TMD與ATMD之動力系統..... 21 3.1.2 輸入之地震歷時.......................... 22 3.1.3 地震歷時下之反應........................ 23 3.2 頻率反應函數............................ 26 3.2.1 結構加裝PCD-ATMD之與頻率反應函數......... 26 3.2.2 結構加裝PCA-ATMD之頻率反應函數........... 27 3.2.3 結構位移頻率反應函數..................... 27 3.2.4 結構絕對加速度頻率反應函數............... 28 3.2.5 質量塊衝程頻率反應函數................... 28 3.2.6 主動控制力反應函數....................... 29 3.3 敏感度分析:PCD-ATMD系統................ 29 3.3.1 PCD-ATMD之增益係數敏感度分析............. 29 3.3.2 PCD-ATMD之振幅比敏感度分析............... 30 3.3.3 PCD-ATMD之TMD頻率比敏感度分析............ 31 3.3.4 PCD-ATMD之TMD阻尼比敏感度分析............ 31 3.3.5 PCD-ATMD之結構頻率敏感度分析............. 32 3.3.6 PCD-ATMD之結構阻尼比敏感度分析........... 33 3.4 敏感度分析:PCA-ATMD系統................ 33 3.4.1 PCA-ATMD之增益係數敏感度分析............. 33 3.4.2 PCA-ATMD之振幅比敏感度分析............... 34 3.4.3 PCA-ATMD之TMD頻率比敏感度分析............ 35 3.4.4 PCA-ATMD之TMD阻尼比敏感度分析............ 35 3.4.5 PCA-ATMD之結構頻率敏感度分析............. 36 3.4.6 PCA-ATMD之結構阻尼比敏感度分析........... 37 3.5 系統穩定性分析.......................... 37 3.5.1 PCD-ATMD系統穩定性分析.................. 38 3.5.2 PCA-ATMD系統穩定性分析.................. 38 第四章 構架試體加裝ATMD之振動台實驗............. 77 4.1 實驗設備與配置.......................... 77 4.1.1 主結構配置.............................. 77 4.1.2 ATMD配置............................... 78 4.1.3 控制介面與量測儀器....................... 79 4.2 實驗構架系統識別........................ 80 4.3 ATMD參數設計............................ 81 4.4 摩擦補償模型............................ 82 4.4.1 摩擦補償目標............................ 82 4.4.2 摩擦補償模型............................ 83 4.4.3 參數辨識方法............................ 84 4.5 數位濾波器.............................. 84 4.6 輸入之地震歷時.......................... 85 第五章 實驗結果與討論.......................... 97 5.1 實驗與數值模擬結果之比較................. 97 5.2 實驗中各ATMD案例之減振效果比較........... 98 5.3 相同震波下PGA值變化之影響................ 99 5.4 不同震波下之減振效果差異................. 101 第六章 結論與建議.............................. 169 6.1 結論................................... 169 6.2 建議................................... 172 參考文獻 ....................................... 173 附錄A ....................................... 179 附錄B ....................................... 183

    1. 「建築物耐震設計規範與解說」,內政部營建署,中華民國100年1月19日台內營字第0990810250號。
    2. Den Hartog J. P., Mechanical Vibrations, 4th ed, McGraw-Hill, New York (1956).
    3. Warburton G.B., Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8(3), pp:197-217 (1980).
    4. Ayorinde E.O., Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8(3), pp:219-236 (1980).
    5. Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10(3), pp:381-401 (1982).
    6. Sadek F., Mohraz B., Taylor A.W., Chung R.M., “A method of estimating the parameters of mass dampers for seismic applications”, Earthquake Engineering and Structural Dynamics, 26(6), pp:617-635 (1997).
    7. Bakre S.V., Jangid, R.S., “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14(3), pp:448-470 (2007).
    8. 鍾立來、顧丁與、賴勇安、吳賴雲,「調諧質塊阻尼器於基底振動之最佳減振設計參數」,中華民國結構工程學會,結構工程,第二十七卷,第四期,第70-90頁(2012)。
    9. 王哲夫,「被動調諧質量阻尼器之最佳設計暨應用」,碩士論文,國立中興大學土木工程學系(1996)。
    10. Lee C.L., Chen Y.T., Chung L.L., Wang Y. P., “Optimal design theories and applications of tuned mass dampers”, Engineering Structures, 28(1), pp:43-53 (2006).
    11. Ghosh A., Basu B., “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14(4), pp:681-692 (2005).
    12. Chang C.C., “Mass dampers and their optimal designs for building vibration control”, Engineering Structures, 21(5), pp:454-463 (1999).
    13. Fujino Y., Abé M., “Design formulas for tuned mass dampers based on a perturbation technique”, Engineering and Structural Dynamics, 22(10), pp:833-854 (1993).
    14. Chang C.M., Shia S., Lai Y.A., “Seismic design of passive tuned mass damper parameters using active control algorithm”, Journal of Sound and Vibration, 426, pp:150-165 (2018).
    15. Hadi N.S., Aifiadi Y. “Optimum design of absorber for MDOF structures”, Journal of Structural Engineering, 124(11), pp:1272-1280 (1998).
    16. Soong T.T., Manolis G.D., “Active structures”, Journal of Structural Engineering, 113(11), pp:2290-2301 (1987).
    17. Chung L.L, Reinhorn A.M., Soong T.T., “Experiments on active control of seismic structures”, Journal of Engineering Mechanics, 114(2), pp:241-256 (1988).
    18. Reinhorn A.M., Soong T.T., Lin R.C., Riley M.A. Wang Y.P., Aizawa S., Higashino M., “Active bracing system: a full scale implementation of active control,” National Center for Earthquake Engineering Research, Buffalo (1992).
    19. Spencer B.F. Jr., Suhardjo J., Sain M.K., “Frequency domain optimal control strategies for aseismic protection”, Journal of Engineering Mechanics, 120(1), pp:135-158 (1994).
    20. Chang J.C., Soong T.T., “Structural control using active tuned mass dampers”, Journal of Engineering Mechanics Division, 106(6), pp:1091-1098 (1980).
    21. Nishimura I., Kobori T., Sakamoto M., Koshika N., Sasaki K., Ohrui S., “Active tuned mass damper”, Smart Materials and Structures, 1(4), pp:306-311 (1992).
    22. Chang C.C., Yang H.T., “Control of buildings using active tuned mass dampers”, Journal of Engineering Mechanics, 121(3), pp.355-366 (1995).
    23. Loh C.H., Chao C.H., “Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-storey building”, Journal of Sound and Vibration, 193(4), pp:773-792 (1996).
    24. Ankireddi S., Yang H.T., “Simple ATMD control methodology for tall buildings subject to wind loads”, Journal of Structural Engineering, 122(1), pp.83-91 (1996).
    25. Rasouli S.K., Yahyai M., “Control of response of structures with passive and active tuned massdampers”, Structural Design of Tall Buildings, 11(1), pp:1-14 (2002).
    26. Li C., Liu Y., Wang Z., “Active multiple tuned mass dampers: A new control strategy”, Journal of Structural Engineering, 129(7), pp:972-977 (2003).
    27. Li C., Liu Y., “Active multiple tuned mass dampers for structures under the ground acceleration”, Earthquake Engineering and Structural Dynamics, 31(5), pp:1041-1052 (2002).
    28. Nagashima I., “Optimal displacement feedback control law for active tuned mass damper”, Earthquake Engineering and Structural Dynamics, 30(8), pp:1221-1242 (2001).
    29. Li C., Li J., Qu Y., “An optimum design methodology of active tuned mass damper for asymmetric structures”, Mechanical Systems and Signal Processing, 24(3), pp.746-765 (2010).
    30. Guclu R., Yazici H., “Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers”, Journal of Sound and Vibration, 318(1-2), pp:36-49 (2008).
    31. Samali B., Al-Dawod M., “Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller”, Engineering Structures, 25(13), pp.1597-1610 (2003).
    32. Mitchell R., Kim Y., El-Korchi T., Cha Y.J. “Wavelet-neuro-fuzzy control of hybrid building-active tuned mass damper system under seismic excitations”, Journal of Vibration and Control, 19(12) , pp.1881-1894 (2013).
    33. Cao B., Li C., “Design of active tuned mass damper based on robust control”, 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2, pp. 760-764 (2012).
    34. Amini F., Hazaveh N. K., Rad A. A., “Wavelet PSO‐based LQR algorithm for optimal structural control using active tuned mass dampers”, Computer-Aided Civil and Infrastructure Engineering, 28(7), pp.542-557 (2013).
    35. Mackriell L.E, Kwok K.C.S., Samali B. “Critical mode control of a wind-loaded tall building using an active tuned mass damper”, Engineering structures, 19(10), pp:834-842 (1997).
    36. Samali B, Al-Dawod M. “Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller”, Engineering structures, 25(13), pp:1597-1610 (2003).
    37. Collins R, Basu B, Broderick B., “Control strategy using bang-bang and minimax principle for FRF with ATMDs”, Engineering structures, 28(3), pp:349-356 (2006).
    38. Li C., Yu Z., Xiong X., Wang C., “Active multiple-tuned mass dampers for asymmetric structures considering soil-structure interaction”, Structural Control and Health Monitoring, 17(4), pp:452-472 (2010).
    39. Kim Y.M., You K.P., You J, Y., Paek S.Y., Nam B.H., “LQR control of along-wind responses of a tall building using active tuned mass damper”, The 2016 World Congress on Advances in Civil, Environmental, and Materials Research(ACEM16), Jiju Island, Korea, August 28-September 1, (2016).
    40. You K.P., You J.Y., Kim Y.M., “LQG control of along-wind response of a tall building with an ATMD”, Mathematical Problems in Engineering, 2014, p:1 (2014).
    41. 甘錫瀅、張敬昌、謝紹松,「細說台北 101 高樓」,科學月刊,第三十八卷,第八期,第690-699 頁(2003)。
    42. Kareem A., Kijewski T., Tamura T., “Mitigation of motions of tall buildings with specific examples of recent applications”, Wind and Structures, 2(3), pp.201-251 (1999).
    43. Nishitani A., & Inoue Y., “Overview of the application of active/semiactive control to building structures in Japan”, Earthquake engineering & structural dynamics, 30(11), pp.1565–1574 (2001).
    44. Ikeda Y., “Active and semi‐active vibration control of buildings in Japan—Practical applications and verification”, Structural Control and Health Monitoring, 16(7-8), pp.703–723 (2009).
    45. 鍾立來、吳賴雲、李明璆、楊培堅,「東帝士85國際廣場之結構主動控制」,結構工程,第十四 卷,第二期,第 45-65 頁(2004)。
    46. Soong T.T., Dargush G.F., Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York (1997).
    47. Chung L. L., Lin C. C., Chu S. Y., “Optimal direct output feedback of structural control”, Journal of engineering mechanics, 119(11), pp.2157-2173 (1993).
    48. Dyke S.J., Spencer Jr B.F., Quast P., Kaspari D.C., Sain M.K., “Implementation of an active mass driver using acceleration feedback control”, Computer‐Aided Civil and Infrastructure Engineering, 11(5), pp:305-323 (1994).
    49. Dyke S.J., Spencer Jr B.F., Quast P., Sain M.K., Kaspari D.C., Soong T.T., “Experimental verification of acceleration feedback control strategies for an active tendon system”, National Center for Earthquake Engineering Research, Technical Report NCEER-94, 24. (1994).
    50. Spencer B.F. Jr., Sain M.K., “Controlling buildings: A new frontier in feedback”, IEEE Control Systems Magazine, 17, pp:19-35 (1997).

    QR CODE
    :::