| 研究生: |
許志宏 Chih-Hung Hsu |
|---|---|
| 論文名稱: |
具繞射式光學元件之矽基45°微反射面研究 Diffractive Optical Element on Silicon-based 45° Reflector |
| 指導教授: |
伍茂仁
Mount-Learn Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學研究所碩士在職專班 Executive Master of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 繞射元件 、45° 反射面 |
| 外文關鍵詞: | 45 degree reflector, diffractive optical element |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽基微光學平台若需光路垂直轉折,例如使雷射光束垂直入射矽基板後轉折90°方向至平面微光學平台上,即需具光學品質且寬度足夠的45°矽基微反射面。一般在(100)矽晶片上以氫氧化鉀(KOH)蝕刻,會留下晶面鍵結較強的(111)面,主要原因在於KOH溶液對該晶向面蝕刻速率相對其他晶向面最為緩慢,因此,欲在(100)矽晶片蝕刻出45°斜面,則須修正晶向面間蝕刻速率,使(110)晶向面的蝕刻速率小於(111)晶向面。在本篇論文中,利用KOH添加IPA之蝕刻液,在特定溫度與濃度下,抑制(110)面的蝕刻速率,進而得到一個深度具97 μm且表面粗糙度達光學品質之矽基45°微反射面。
接著,在矽基45°微反射面上設計一個繞射元件,藉由繞射光柵週期的調整設計,使得繞射元件對徑向面與子午面之聚焦能力不同,而改善光線入射45°微反射面所引起的像差,並且經由微製程技術將繞射式光學元件整合於矽基45°微反射面上。此一體化(monolithic)之微光學元件,將使得單模光纖的發散光場經由45°矽基微反射面偏折同時亦能夠達到準直、聚焦在特定位置之效果,同時減化微光學系統對位封裝之需求,在積體化、三維化之微光學平台上,深具發展與應用潛力。
A Si-based 45° micro reflector with very deep depth more than 100 μm and RMS surface roughness less than 20 nm by using the anisotropic wet etching process was demonstrated. In general, the etch rate of {110} planes on a (100)
silicon wafer is fastest than that of the other crystalline planes. The corner compensation method in the fabrication of 45° slants is developed for suppressing the etching rate of {110} planes. Therefore, this Si-based 45° micro
reflector can be etched to deep depth more than 100 μm with surface roughness less than 20 nm. This micro reflector makes the in-plane light on the general
optical bench to successfully deflect to the out-of-plane.
Moreover, for reducing the following assemble process of macro and micro optical elements in such a 3-D optical setup, a monolithic integration of this Fresnel lens based on this Si-based 45° micro reflector is also developed. For
eliminating the astigmatic aberration due to this inherent off-axis optical setup, an aspherical Fresnel lens with different refraction power in the tangential and saggital direction is designed and fabricated. The measurement result is also discussed in this paper.
[1] G. D. Boyd, L. A. Coldren, and F. G. Storz, “Directional reactive ion
etching at oblique angles”, Appl. Phys. Lett. ,36(7), p. 583-585, 1980.
[2] C.Strandman, L.Rosengren, and Y.Backlund, “Fabrication of 45o optical
mirrors in (100)Si using wet anisotropic etching”, Proc. IEEE Workshop
Micro-Electro Mechanical Systems (MEMS-95) Amsterdam, p. 244-249,
1995.
[3] Kenji Tokoro et al., “Anisotropic Etching Properties of Silicon in KOH
and TMAH Solutions”, IEEE International Symposium on
Micromechatronics and Human Science,1998, p.65-69.
[4] I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the
possibility of spatial structures forming in the course of Si(100) anisotropic
etching in KOH and KOH+IPA solutions”, Sensors and Actuators A:
Physical, 84, p. 116-125,2000
[5] I. Zubel, “Silicon anisotropic etching in alkaline solutions IV - The effect
of organic and inorganic agents on silicon anisotropic etching process”,
Sensors and Actuators A: Physical, 87, p. 163-171,2001
[6] I. Zubel, “The effect of isopropyl alcohol on etching rate and roughness of
(100) Si surface etched in KOH and TMAH solutions”, Sensors and
Actuators A: Physical, 93, p. 138-147,2001
[7] S. M. Sze, Semiconductor Device : Physics and Technology, JOHN
WILEY,2002
[8] Donald C. O''Shea, et al., Diffractive Optics : Design, Fabrication, and Test,
WA : SPIE Optical Engineering Press, 2003