| 研究生: |
李政緯 LEE, CHENG-WEI |
|---|---|
| 論文名稱: |
矩形鋼管混凝土構材之軸壓與雙向彎矩互制圖研究 |
| 指導教授: |
莊德興
Juang, Der-Shin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鋼管混凝土 、軸力-雙向彎矩互制曲面 、纖維元素法 |
| 外文關鍵詞: | Concrete filled steel tubular, Axial load - biaxial bending moment interaction curve, Fiber element method |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用AISC-LRFD-2010與非線性之纖維元素法(fiber element method)建立矩形鋼管混凝土柱(Concrete-Filled steel Tubular, CFT)的軸力-雙向彎矩互制曲面。研究中採用的纖維元素法是將構材斷面離散化為數個纖維元素,在固定軸壓力與中性軸轉角下假設偏心軸壓力作用,根據鋼骨與混凝土之應力與應變關係,求得斷面各纖維元素的應力狀態,並逐步調整中性軸位置,直至斷面內力滿足力平衡條件和指定之中性軸轉角為止,即可求得固定軸壓下之兩向彎矩強度,改變軸壓力與中性軸轉角重複計算上述步驟,直至三維軸力-雙向彎矩互制曲面完整。
利用多組矩形CFT軸力-彎矩的試驗數據,驗證纖維元素法用於矩形CFT構材之軸力-雙向彎矩互制曲面的合理性,並討論柱長、寬厚比與材料強度等參數對於CFT柱彎矩強度之影響,定義纖維元素法可使用的範圍。纖維元素法的主要缺點在於無法考慮P-二次彎矩、構材長細比和局部挫屈的影響,目前纖維元素法的軸力-雙向彎矩互制曲面適用於低軸壓之矩型結實短柱。
This study presents nonlinear fiber element analysis method determine the axial load-biaxial bending moment interaction curve of concrete filled steel tubular section (CFT). Fiber element method transform a column section into several fiber elements. Assuming an eccentric shaft of the pressure, according to the stress and strain relationship of steel and concrete, finding stress for each fiber, as well as adjusting the depth and orientation of the neutral axis in a composite section to satisfy equilibrium conditions. Then, it can calculate the axial load and biaxial bending moment.
In this study, discussing bending moment strength compares fiber element method with experience data. Column length, materials strength and thickness ratio are important parameters to reduce the strength of the numerical analysis. The main disadvantages of fiber element method is unable to consider P- effect、slenderness ratio and local buckling. Compact section or non-compact section is an important index having priority to check before analysis. So, fiber element analysis method is applied to analyze short columns and compact-section.
Using axial load and moment experience data of CFT discusses accuracy of AISC-LRFD-2010.
[1] 許協隆、莊德興(2013)。雙軸彎矩矩形鋼管混凝土柱設計與應用(中鼎工程股份有限公司計畫)。台北: 財團法人中技社。
[2] AISC.,(2010) “Specification for Structural Steel Buildings,”American Institute of Steel Construction. Chicago, IL.
[3] Bridge, R. Q., O’Shea, M. D., (1998) “Behaviour of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91
[4] Chen SF, Teng JG, Chan SL., (1997) “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678–685.
[5] Choi, Y. H., Foutch, D. A., LaFave, J. M., (2006) “New approach to AISC P-M interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp.1586-1598
[6] EI-Tawil, S., Sanz-Picon, C. F., Deierlein, G. G., (1995) “Evalution of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” J. Construct. Steel Research, Vol. 34, pp. 103-123
[7] El-Tawil S, Deierlein GG., (1999) “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp.1009–1019.
[8] Furlong RW., (1967) “Strength of steel-encased concrete beam–columns, ” Journal of Structural Division, pp. 113–124.
[9] Ge HB, Usami T., (1992) “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036–3054.
[10] Hajjar JF, Gourley BC., (1996) “Representation of concrete-filled steel tube crosssection strength, ” Journal of Structural Engineering, Vol. 122, pp. 1327–1336.
[11] Han LH., (2002) “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353–372.
[12] Knowles RB, Park R., (1969) “Strength of concrete-filled steel tubular columns, ” Journal of Structural Division, Vol. 95, pp. 2565–2587.
[13] Lakshmi, B., Shanmugam. , N. E., (2002) “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933.
[14] Liu, D., (2006) “Behavior of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns ,” Journal of Constructional Steel Research, Vol. 62, pp. 839-846.
[15] Liang, Q. Q., Uy, B., (2000) “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns, ”Computers and Structures, Vol. 75, pp. 479-490
[16] Liang, Q. Q., Uy, B., Liew, J. Y. R., (2005) “Strength of concrete-filled steel box columns with local buckling effects,” Australian Journal of Structural Engineering, Vol. 7,pp. 145-155
[17] Liang, Q. Q., Uy, B., Liew, J. Y. R., (2007) “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405
[18] Liang, Q. Q., (2008) “Nonlinear analysis of short concrete filled steel tubular beam–columns under axial load and biaxial bending,” Journal of Constructional Steel Research, Vol. 64, pp. 295–304
[19] Mursi M, Uy B., (2003) “Strength of concrete filled steel box columns incorporating interaction buckling. Journal of Structural Engineering, Vol. 129, pp. 626–638.
[20] Mao, X. Y., Xiao, Y., (2006) “Seismic behavior of confined square CFT columns,” Engineering Structures, Vol. 28, pp. 1378-1386
[21] Mutioz , P. R.,(1994)“Behavior of biaxially loaded concrete-encased composite columns,” New Jersey Institute of Technology
[22] Matsui, C., Tsuda, K., and Ishibashi, Y., (1995) ‘‘Slender concrete filled steel tubular columns under combined compression and bending.’’ Proc., 4th Pacific Struct. St. Conf., Singapore, Vol. 3, pp. 29–36.
[23] Munoz PR, Hsu CTT., (1997) Behavior of biaxially loaded concrete-encased composite columns. Journal of Structural Engineering, Vol. 123, pp. 1163–71.
[24] Patel, V. I., Liang, Q. Q., Hadi, (2012) “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior,” Journal of Constructional steel research, Vol. 70, pp.368-376
[25] Schneider, S. P., (1998) “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol.124, pp. 1125-1138.
[26] Spacone E, El-Tawil S., (2004) “Nonlinear analysis of steel–concrete composite structures: State of the art, ” Journal of Structural Engineering, Vol. 130(2),pp.159–68.
[27] Tomii, M., Sakino, K., (1979) “Elastic–plastic behavior of concrete filled square steel tubular beam–columns, ” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111–120.
[28] Tomii M, Yoshimura K, Morishita Y., (1977) “ Experimental studies on concrete filled steel tubular stub columns under concentric loading, ” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads,pp . 718–741.
[29] Varma, A. H., Ricles, J. M., Sause, R., Lu , L., (2002) “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758
[30] Uy. B., (1998) “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72.
[31] Uy B.,(2000) “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering,Vol. 126,pp. 341–352.
[32] Wright HD.,(1995) “Local stability of filled and encased steel sections, ” Journal of Structural Engineering,Vol. 121,pp. 1382–1388.