| 研究生: |
羅婉慈 Wan-Tzu Lo |
|---|---|
| 論文名稱: |
利用人工固態電解質介面提升鋰離子電池之電性表現及安全性 Artificial Solid Electrolyte Interface Enhances Lithium Battery Life Cycle and Safety |
| 指導教授: |
諸柏仁
Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 固態電解質介面 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為滿足高耗能3C隨身器材及電動汽機車(HEV、EV)的快速發展,鋰離子電池的能量密度和電容量也不斷的提升。因此解決鋰離子電池的循環壽命的不足、高溫下的性能及安全性問題益發急迫。鋰離子電池電解液,會因為在循環過程中,與活性材料發生反應,電解液中的鋰鹽會在高溫環境下受熱而分解,造成鋰離子電池電容損失,若此情形未得到控制,則會持續產生氣體(CO2, H2, CO 等),使內部壓力升高,更嚴重的是產生放熱反應使內部溫度上升,造成燃燒或爆炸等安全問題。故本研究旨在研發一新型電解質添加劑,以1,3-二甲基巴比妥酸(1,3-DBTA)與N,N'-(1,3-亞苯基)二馬來醯亞胺(HVA)和N-苯基馬來醯亞胺(PMI)進行共聚反應而得。此添加劑是具有網狀結構、抗氧化及抗熱等多項功能的新型添加劑(HPKS),可以抑制或延緩電解質的分解情形,以及可在電極上形成穩定的SEI層,來改善鋰離子電池的電性表現及安全性。我們將此電解液添加劑對Li(Ni1/3Mn1/3Co1/3)O2/Li半電池(正極)和Li/MCMB半電池(負極)進行充放電測試,並利用液態核磁共振分析儀(NMR)分析添加劑在高溫下對電解液的影響以及使用電子掃描顯微鏡(SEM)和X-射線光電子光譜(XPS)分析電極表面的型態及組成和電化學主抗頻譜(EIS)觀察其內電組的變化。
另外,也比較了兩款結構不同的添加劑HPKS以及BPMI的效應。HPKS可以生成結構較緻密的人工SEI層,BPMI則生成較蓬鬆的人工SEI層。實驗結果顯示,在室溫環境下,經過80圈充放電後,使用VC為添加劑(UBK)、HPKS添加劑以及BPMI添加劑的電容保持率分別為88.2%、94.5%和96.5%。在高溫(60oC)環境下,經過30圈充放電後,它們的電容保持率分別為93.0%、97.4%和95.1%。
This study disclosed a novel approach to improve lithium battery life cycle which also eliminated thermal run-away. The formation of artificial solid electrolyte interface (SEI) coating (achieved by several effective approaches) was shown to improve lithium battery cyclic performance at elevated temperature, high rate charge/discharge performance, and mostly avoided thermal run-away. These artificial solid electrolyte modifications with different degree of pore densities are found to exhibit different effects on lithium-ion cell performances using EC: DMC: EMC+VC+ LiPF6-based electrolyte. The study shows the pre-formed solid electrolyte interface on both anode (MCMB) and cathode (NMC=1:1:1), changed the SEI compositions with improved electrochemical stability, that consumes less carbonates and hindered salt decomposition, generates much less HF. The interface composition and structure after pre-formation and after cycling in coin cell is investigated via scanning electron microscope (SEM), electrochemistry impedance spectroscopy (EIS) and cyclic voltammetry (CV) test using both Li(Ni1/3Mn1/3Co1/3)O2/Li half-cell and Li/graphite half-cell. The chemical stability under elevated temperature is characterized by nuclear magnetic resonance (NMR).
We found that this additive formed more stable solid electrolyte interface (SEI) on electrodes during charge and discharge operation, and has prevented electrolyte and lithium salts from decomposition under high temperature operation conditions. Two types of Artificial SEI modifications bearing denser and harder SEI modifications (HPKS) and softer and more elastic SEI modifications (BPMI) are compared. After 80th cycling at room temperature, the capacity retention is found to be 88.2% with VC (vinylene carbonate), 94.5% with HPKS Artificial SEI, and about 96.5% with BPMI Artificial SEI. After 30th cycling at 60oC, the capacity retention is found to be 93.0% with VC Artificial SEI, 97.4% with HPKS Artificial SEI, and about 95.1% with BPMI Artificial SEI.
1. Pallavi Verma, P.M., Petr Novák, Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. Electrochimica Acta, 2011. 56(10): p. 3555–3561.
2. Pallavi Verma, P.N., Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. CARBON, 2012. 50(7): p. 2599-2614.
3. S. Menkina, D.G., b, E. Peleda, Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochemistry Communications, 2009. 11(9): p. 1789–1791.
4. Wentao Li, C.C., Brett L. Lucht, Boris Ravdel, Joseph DiCarlo and K. M. Abraham, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
5. Kang Xu, M.S.D., T. Richard Jow, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004. 104: p. 4303-4417.
6. Rauh, R.D.B., S. B., The effect of additives on lithium cycling in methyl acetate. Electrochimica Acta, 1977. 22(1): p. 85-91.
7. Kang Xu, S.P.D., T. Richard Jow, Toward Reliable Values of Electrochemical Stability Limits for Electrolytes. J. Electrochem. Soc., 1999. 146(11): p. 4172-4178.
8. Kang Xu, M.S.D., T. Richard Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. J. Electrochem. Soc., 2001. 148(3): p. A267-A274.
9. Mori, M.U.a.S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc., 1995. 142(8): p. 2577-2581.
10. Schmidt, M.H., U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat’ev, N.; Sartori, P., Lithium-Ion Batteries: Advances and Applications. J. Power Sources, 2001. 97–98: p. 557.
11. Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone. J. Electrochem. Soc., 1994. 141(12): p. 3336-3342.
12. K. M. Abraham, J.L.G., D. I.. Natwig Characterization of Ether Electrolytes for Rechargeable Lithium Cells J. Electrochem. Soc, 1982. 129(11): p. 2404-2409.
13. Christopher L. Campion, W.L., Brett L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(12): p. A2327-A2334.
14. Jian Yan, J.Z., Yu-Chang Su, Xi-Gui Zhang, Bao-Jia Xia, A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries. Electrochimica Acta 55, 2010. 55(5): p. 1785-1794.
15. Doron Aurbach, M.D.L., Elena Levi, and Alexander Schechter, Failure and Stabilization Mechanisms of Graphite Electrodes. J. Phys. Chem. B, 1997. 101: p. 2195-2206.
16. D. Aurbach, B.M., I. Weissman, E. Levi , Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999. 45: p. 67-86.
17. Sullivan, A.N.D.a.B.P., The Electrochemical Decomposition of Propylene Carbonate on Graphite. J. Electrochem. Soc., 1970. 117: p. 222-224.
18. J.O. Besenhard , M.W., j. Yang, W. Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54: p. 228-231.
19. Geun-Chang Chung, H.-J.K., Seung-Il Yu, Song-Hui Jun, Jong-wook Choi, and Myung-Hwan Kim, Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society, 2000. 147(12): p. 4391-4398.
20. J. Yan, B.-J.X., Y.-C. Su, X.-Z. Zhou, et al, Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochimica Acta, 2008. 53(24): p. 7069-7078.
21. Doron Aurbach, K.G., Boris Markovsky, Gregory Salitra, Yossi Gofer, Udo Heider, Ruediger Oesten, and Michael Schmidt, The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331.
22. Aurbach, D.G., K.; Markovsky, B.; Salitra, G.; Gofer,Y.; Heider, U.; Oesten, R.; Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331
23. Dahn, J.N.R.a.J.R., Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc., 1992. 139(8): p. 2091-2097.
24. M. S. Wu, P.C.J.C., and J. C. Lin, Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements. J. Electrochem. Soc, 2005. 152(1): p. A47-A52.
25. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999. 81-82: p. 715–719.
26. J. I. Yamaki, S.I.T., K. Hayashi, S. Keiichi, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
27. D. D. MacNeil, Z.L., Z. Chen, and J. R. Dahn, A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources, 2002. 108(1-2): p. 8-14.
28. R. A. Leising, M.J.P., E. S. Takeuchi, and K. J. Takeuchi, A study of the overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2001. 97-98: p. 681–683.
29. F. Orsini, A.D.P., B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, and P. Notten, In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. Journal of Power Sources, 1988. 76(1): p. 19–29.
30. M. Rosso, C.B., A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, and S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochimica Acta, 2006. 51(25): p. 5334-5340.
31. J. S. Shin, C.H.H., U. H. Jung, S. I. Lee, H. J. Kim, and K. Kim, Effect of Li2CO3 additive on gas generation in lithium-ion batteries. Journal of Power Sources, 2002. 109(1): p. 47–52.
32. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. Journal of Power Sources, 1999. 81-82: p. 715–719.
33. T. Ohsaki, T.K., T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and A. Satoh, Overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2005. 146: p. 97-100.
34. M. Onuki, S.K., Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, and M. Deguchi, Identification of the Source of Evolved Gas in Li-Ion Batteries Using 13C-labeled Solvents. Journal of The Electrochemical Society, 2008. 155(11): p. A794-A797.
35. A. Hammami, N.R., and M. Armand, Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature, 2003. 424: p. 635-636.
36. D. Aurbach, A.Z., Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systemsOriginal Research Article. Journal of Power Sources, 1997. 68: p. 91-98.
37. Qingsong Wang, J.S., Xiaolin Yao, and Chunhua Chen, Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc, 2006. 153(2): p. A329-A333.
38. Sang-Young Lee, S.K.K., Soonho Ahn, Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyteOriginal Research Article. Journal of Power Sources, 2007. 174(2): p. 480–483.
39. Qingsong Wang, J.S., Xiaolin Yao, Chunhua Chen, Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteriesOriginal Research Article. Thermochimica Acta, 2005. 437: p. 12–16.
40. G. GirishKumar, W.H.B., B. K. Peterson, and W. J. Casteel, Electrochemical and Spectroscopic Investigations of the Overcharge Behavior of StabiLife Electrolyte Salts in Lithium-Ion Batteries. J. Electrochem. Soc, 2011. 158(2): p. A146-A153.
41. J. Chen, C.B., and J. R. Dahn, Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem. Solid-State Lett, 2005. 8(1): p. A59-A62.
42. C. Buhrmester, L.M., R. L. Wang, and J. R. Dahn, Phenothiazine molecules. J. Electrochem. Soc., 2006. 153: p. A288.
43. C. Buhrmester, L.M.M., R. L. Wang, and J. R. and Dahn;, The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J. Electrochem. Soc, 2006. 153(10): p. A1800-A1804.
44. X. L. Yao, S.X., C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. Journal of Power Sources, 2005. 144(1): p. 170-175.
45. H. F. Xiang, Q.Y.J., C. H. Chen, X. W. Ge, S. Guo, and J. H. Sun, Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. Journal of Power Sources, 2007. 174(1): p. 335–341.
46. Y. Ein-Eli, S.F.M., D. Aurbach, B. Markovsky and A. Schecheter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes. Journal of The Electrochemical Society, 1997. 144(7): p. L180-L184.
47. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8-9): p. 1636–1640.
48. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162: p. 1379–1394.
49. J.T. Lee, M.S.W., F.M.Wang, Y.W. Lin, M.Y. Bai, P.C. Chiang, Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries. J. Electrochem. Soc., 2005. 152(9): p. A1837-A1843.
50. C. Wang, H.N., H. Komatsu, M. Yoshio, H. Yoshitake, Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources, 1998. 74(1): p. 142-145.
51. A.M. Andersson, K.E., Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. J. Electrochem. Soc., 2001. 148(10): p. A1100-A1109.
52. X. Sun, H.S.L., X.Q. Yang, J. McBreen, The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(2): p. A43-A46.
53. H.S. Lee, X.Q.Y., C.L. Xiang, J. McBreen, L.S. Choi, The Synthesis of a New Family of Boron‐Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions. J. Electrochem. Soc., 1998. 145(8): p. 2813-2818.
54. O. Hiroi, K.H., Y. Yoshida, S. Yoshioka, H. Shiota, J. Aragane, S.Aihara, D. Takemura, T. Nishimura, M. Kise, H. Urushibata, H. Adachi, U.S. Patent 6,305,540. 2001.
55. S.S. Zhang, K.X., T.R. Jow, The low temperature performance of Li-ion batteries. Journal of Power Sources, 2003. 115(1): p. 137-140.
56. Xianming Wang, H.N., Yoshitsugu Sone, Go Segami, and Saburo Kuwajima, New Additives to Improve the First-Cycle Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells. J. Electrochem. Soc., 2005. 152(10): p. A1996-A2001.
57. K. Appel, S.P., U.S. Patent 6,159,640 2000.
58. W. Li, C.C., B.L. Lucht, B. Ravdel, J. DiCarlo, K.M. Abrahamb, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
59. KM Abraham, J.F., JL Goldman, Long Cycle Life Secondary Lithium Cells Utilizing Tetrahydrofuran. J. Electrochem. Soc, 1984. 131: p. 2197.
60. M. Morita, S.A., Y. Matsuda, ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochimica Acta, 1992. 37(1): p. 119-123.
61. R.D. Rauh, S.B.B., The effect of additives on lithium cycling in propylene carbonate. Electrochimica Acta, 1977. 22(1): p. 75-83.