跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林暐捷
Wei-Jie Lin
論文名稱: 脈衝式金屬有機化學氣相沉積脈衝持續時間對傳輸現象之數值分析
Numerical Analysis of the Relation Between Pulse Time and Transport Phenomena in Pulsed Metal-Organic Chemical Vapor Deposition
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 數值分析脈衝式金屬有機化學氣相沉積氮化鋁
外文關鍵詞: numerical analysis, pulsed MOCVD, AlN
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三族氮化物半導體材料因為優秀的導熱性及電性成為未來高頻率電子元件相當重
    要的材料,其中氮化鋁(AlN)是三族氮化物材料當中晶格常數最接近碳化矽且能隙最大
    的材料,這使得氮化鋁不僅可以做為基板與三族氮化物薄膜間的緩衝層,同時也是許多
    半導體元件重要的材料。由於 AlN 的製程過程會產生大量奈米微粒,進而影響薄膜品
    質,為了提升三族氮化物半導體元件的效能,利用脈衝法降低製程中的奈米微粒以及控
    制薄膜成核方向是未來此類電子元件發展重要的一環。相較於連續金屬有機化學氣相沉
    積(MOCVD),脈衝式 MOCVD 製程中脈衝的開啟與關閉會導致腔體內的傳輸現象變得
    相當複雜,難以找到最佳的製程條件。
    本研究參考流場較穩定的單通道水平式腔體,建立包含流體力學、熱傳、質傳以及
    化學反應的數值模型,藉此觀察脈衝式金屬有機化學氣相沉積製程中的傳輸現象,並分
    析不同脈衝持續時間對傳輸現象及薄膜沉積的影響。結果顯示腔體中的速度邊界層會使
    III 或 V pulse 的邊界凸向下游,而 III pulse 的凸出率大於 V pulse 是因為 TMAl 的擴散
    速度較慢、速度邊界層內外的質傳速率差異較大所致,這是導致不同時間進入腔體的前
    驅物依然會互相混合形成奈米微粒的主要原因。而載盤表面 TMAl 及 NH3 的質量分率會
    在 III pulse 及 V pulse 開啟 0.15 秒後達到穩定,因此對於脈衝長度超過 0.15 秒之 III pulse
    及 V pulse,持續時間改變對腔體中的傳輸現象影響不大,但腔體中 TMAl 及 NH3 的濃
    度隨著 H2 pulse 持續時間增加而緩慢下降,這使得 H2 pulse 的持續時間對減緩微粒產生
    效果顯著。
    最後,在抑制奈米微粒的優勢與拉長製程時間的缺點相互競爭之下,為了找到最佳
    脈衝持續時間取得最高沉積速率,在固定 TMAl 用量的情況下,首先參考低 V/III 比的
    製程可以有效找出不同脈衝時間下的最高沉積速率,最後配合 V/III 比增加對沉積速率
    的負面效應,便可預測不同 V/III 比下的最高沉積速率與相對應的脈衝持續時間。


    Because of high thermal conductivity and outstanding electric properties, III nitride
    semiconductor materials become one of the most important materials for the application of the
    high-frequency device and deep ultraviolet LED. Among all III-nitride materials, AlN has the
    highest bandgap. It makes the AlN can be applied not only as an extraordinary buffer layer
    between group III nitride film and substrate but also as the active layer of UV LED and a barrier
    layer of HEMT. To improve the performance of III-nitride devices and reduce the cost of
    production, controlling the generation of nano-particle and the direction of the nucleation is
    crucial in the semiconductor industry. Compared to the traditional continuous MOCVD process,
    the transport phenomenon is more complicated in pulsed MOCVD because of the sequence of
    different pulses during the process.
    A numerical model is built to observe the relationship between the transport phenomenon,
    chemical reaction, and deposition rate. The result shows that a slower mass transportation rate
    in the velocity boundary layer near the wall or substrate can make the shape of III or V pulse
    convex downstream. Moreover, the convexity of the interface of the III pulse increases faster
    than that of the V pulse because of the lower mass diffusion coefficient of TMAl. On the other
    hand, the mass fraction of TMAl or NH3 becomes stable 0.15 s after the III pulse or V pulse
    starts. But it takes massive time to make the mass fraction of TMAl and NH3 near the substrate
    back to zero because the mass diffusion rate is slow. The pulsed time for the H2 pulse can affect
    the chemical reaction between the TMAl and NH3 more than the pulsed time of the III or V
    pulse. By increasing the pulsed time of the H2 pulse, the generation of AlN nano-particle can
    be suppressed and the usage of the TMAl source can be improved. However, it also makes the
    process time increase. A method to find the best compromise between suppressing the
    generation of AlN and the shortening process is proposed. The method to estimate the maximum
    deposition rate for different V/III ratios is also presented.

    摘要.......................................................................................................................................................... i Abstract ................................................................................................................................................... ii 目錄........................................................................................................................................................ iv 圖目錄.................................................................................................................................................... vi 表目錄.................................................................................................................................................. viii 符號表.................................................................................................................................................... ix 第一章 前言 ........................................................................................................................................1 1.1 III 族氮化物的材料性質與應用(AlN)..................................................................................1 1.2 金屬有機化學氣相沉積(MOCVD).......................................................................................1 1.3 脈衝式 MOCVD 製程............................................................................................................3 1.4 製程條件與沉積之關係 ........................................................................................................3 1.5 研究動機與目的 ....................................................................................................................6 第二章 研究方法 ..............................................................................................................................10 2.1 物理與數學模型 ..................................................................................................................10 2.2 網格與數值方法 ..................................................................................................................14 2.3 模型驗證 ..............................................................................................................................14 第三章 結果與討論 ..........................................................................................................................22 3.1 脈衝式 MOCVD 製程中的基本傳輸現象..........................................................................22 3.1.1 速度與溫度分布..............................................................................................................22 3.1.2 脈衝式製程與質傳..........................................................................................................23 3.1.3 脈衝轉換對前驅物傳輸之影響......................................................................................24 3.1.4 脈衝式製程中之寄生反應..............................................................................................25 3.2 脈衝製程參數對沉積速率及微粒生成之影響...................................................................28 3.2.1 H2 pulse 時間對製程之影響............................................................................................28 3.2.2 V/III 比對製程之影響.....................................................................................................28 3.2.3 固定 TMAl 流量不同 V/III 比與 H2 pulse 持續時間對沉積速率的影響 ..................29 結論........................................................................................................................................................55 參考文獻................................................................................................................................................57

    1. M. Slomski, Thermal Conductivity of Group-III Nitrides and Oxides. doctoral dissertation,
    North Carolina State University (2017).
    2. S. Strite and H. Morkoc, GaN, AIN, and InN: A review. J. Vac. Sci. Technol. B 10(4), (1992)
    1237-1266.
    3. R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Ailey, and C. Wang, Deposition of IIIN thin films by molecular beam epitaxy. J. Microelectron. 25 (1994) 661-674.
    4. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial
    growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 48 (1986)
    353-355.
    5. S. Zamir, B. Meyler, E. Zolotoyabko, and J. Salzman, The effect of AlN buffer layer on
    GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J. Crystal Growth 218 (2000)
    181-190.
    6. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and
    T. J. Jenkins, High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon
    Carbide Substrates. IEEEIEEE ELECTRON DEVICE LETTERS 20 (1999)161-163.
    7. M. A. Mastro, C. R. Eddy Jr., D. K. Gaskill, N. D. Bassim, J. Casey, A. Rosenberg, R. T.
    Holm, R. L. Henry, and M. E. Twigg, MOCVD growth of thick AlN and AlGaN superlattice
    structures on Si substrates. J. Crystal Growth 287 (2006) 610–614.
    8. D. Liu, S. J. Cho, J. Park, J. Gong, J-H Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A. R.
    K. Kalapala, J. D. Albrecht, W. Zhou, B. Moody, and Z. Ma1, 226 nm AlGaN/AlN UV
    LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113 (2018)
    011111.
    9. M. Ichikawa, A. Fujioka, T. Kosugi, S. Endo, H. Sagawa, H. Tamaki, T. Mukai, M. Uomoto,
    58
    and T. Shimatsu, High-output-power deep ultraviolet light-emitting diode assembly using
    direct bonding. Appl. Phys. Express 9 (2016) 072101.
    10. N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, H. Tokuda and M. Kuzuhara, AlN/AlGaN
    HEMTs on AlN substrate for stable high-temperature operation. ELECTRONICS
    LETTERS 30th 50 (2014) 211–212.
    11. O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Usikov, and V. Dmitriev, Thick AlN layers
    grown by HVPE. J. Crystal Growth 281 (2005) 87–92.
    12. A. Kakanakova-Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog, and E. Janzén,
    Hot-Wall MOCVD for Highly Efficient and Uniform Growth of AlN. Cryst. Growth Des.
    Vol. 9, No. 2, (2009) 880-884.
    13. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, S. N. Svitasheva, K. S. Zhuravlev, Z.
    Osvath, L. Dobos, Z. E. Horvath, and B. Pecz, AlN growth on sapphire substrate by
    ammonia MBE. J. Crystal Growth 300 (2007) 145–150.
    14. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, The Use of Metalorganics in the
    Preparation of Semiconductor Materials: IV . The Nitrides of Aluminum and Gallium. J.
    Electrochem. Soc. Vol. 118, No. 11(1971) 1864-1867.
    15. S. Nakamura, Y. Harada, and M. Seno, Novel metalorganic chemical vapor deposition
    system for GaN growth. Appl. Phys. Lett. 58 (1991) 2021-2023.
    16. T. G. Mihopoulos, V. Gupta, K. F. Jensen, A reaction-transport model for AlGaN MOVPE
    growth. J. Crystal Growth 195 (1998) 733-739.
    17. D.G. Zhao, J.J. Zhu, D.S. Jiang, Hui Yang, J.W. Liang, X.Y. Li, and H.M. Gong, Parasitic
    reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition.
    J. Crystal Growth 289 (2006) 72–75.
    18. L. Tang, R. Zuo, H. Zhang, Quantum chemical study on nanoparticles formation mechanism
    n AlGaN MOCVD growth. J. Crystal Growth 525 (2019) 125201.
    19. J. An, X. Dai, Q. Zhang, R. Guo, and L. Feng, Gas-phase chemical reaction mechanism in
    59
    the growth of AlN during High-Temperature MOCVD: A Thermodynamic Study. ACS
    Omega 5 (2020) 11792-11798.
    20. Y. Inagakiz and T. Kozawa, Chemical reaction pathways for MOVPE growth of aluminum
    nitride. ECS Journal of Solid State Science and Technology, 5 (2) (2016) 73-75.
    21. I. Demir, H. Li, Y. Robin, R. McClintock, S. Elagoz, and M. Razeghi, Sandwich method to
    grow high quality AlN by MOCVD. J. Phys. Appl. Phys. 51 (2018) 085104.
    22. İ. Demir, Y. Robin, R. McClintock, S. Elagoz, K. Zekentes, and M. Razeghi, Direct growth
    of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy. Phys. Status Solidi
    (A) 214 (2017) 1600363.
    23. L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J.
    Xu, and D. P. Yu, Reduction in threading dislocation densities in AlN epilayer by
    introducing a pulsed atomic-layer epitaxial buffer layer. Appl. Phys. Lett. 93 (2008) 122104.
    24. R. S. Qhalid Fareed, R. Jain, R. Gaska, and M. S. Shur, High quality InN/GaN
    heterostructures grown by migration enhanced metalorganic chemical vapor deposition.
    Appl. Phys. Lett. 84 (2004) 1892.
    25. R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, G. Tamulaitis, J. Mickevicius, R. Aleksiejunas,
    M. S. Shur, and M. A. Khan, Migration enhanced MOCVD (MEMOCVDTM) buffers for
    increased carrier lifetime in GaN and AlGaN epilayerson sapphire and SiC substrate. phys.
    stat. sol. (c) 2, No. 7 (2005) 2095–2098.
    26. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Influence
    of the growth temperature of AlN nucleation layer on AlN template grown by hightemperature MOCVD. Materials Letters 114 (2014) 26–28.
    27. H. Kröncke, S. Figge, T. Aschenbrenner, and D. Hommel, Growth of AlN by pulsed and
    conventional MOVPE. J. Cryst. Growth 381 (2013) 100–106.
    28. I. Streicher, S. Leone, L. Kirste, and O. Ambacher, Effect of V/III ratio and growth pressure
    on surface and crystal quality of AlN grown on sapphire by metal-organic chemical vapor
    60
    deposition. J. Vac. Sci. Technol. A 40 (2022) 032702.
    29. A.V. Lobanova, E.V. Yakovlev, R.A Talalaev, S.B. Thapa, F. Scholz, Growth conditions and
    surface morphology of AlN MOVPE. J. Crystal Growth 310 (2008) 4935–4938.
    30. W. Luo, L. Li, Z. Li, Q. Yang, D. Zhang, X. Dong, D. Peng, L. Pan, C. Li, B. Liu, and R.
    Zhong, Influence of the nucleation layer morphology on the structural property of AlN films
    grown on c-plane sapphire by MOCVD. J. Alloys and Compounds 697 (2017) 262-267.
    31. J-S Yang, H. Sodabanlu, I. Waki, M. Sugiyama, Y. Nakano, and Y. Shimogaki, Process
    design of the pulse injection method for low-temperature metal organic vapor phase
    epitaxial growth of AlN at 800°C. J. Crystal Growth 311 (2009) 383-388.
    32. K. Nakamura, A. Hirako, and K. Ohkawa, Analysis of pulsed injection of precursors in AlNMOVPE growth by computational fluid simulation. Phys. Status Solidi C 7, No. 7–8, (2010)
    2268–2271.
    33. D. Endres, S. Mazumder, Numerical investigation of pulsed chemical vapor deposition of
    aluminum nitride to reduce particle formation. J. Crystal Growth 335 (2011) 42–50.
    34. C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford, M. Ludowise, S.
    Lester, and J. Amano, A study of parasitic reactions between NH3 and TMGa or TMAI.
    Journal of Electronic Materials 25 (1996) 1004–1008.
    35. P.D. Neufeld, A.R. Jenzen, R.A. Aziz, Empirical equation to calculate 16 of the transport
    collision integrals Ω for the Lennard-Jones (12-6) potential, J. Chem. Phys. 57 (1972) 1100–
    1102.
    36. R.S. Brokaw, Predicting transport properties of dilute gases, Ind. Eng. Process Design
    Develop 8 (1969) 240–253.
    37. Computational fluid dynamics ACE+ suite, ESI Group, https://www.esi-group.com/
    38. T.J. Mountziaris, K.F. Jensen, Gas-phase and surface reaction mechanisms in MOCVD of
    GaAs with trimethyl-gallium and arsine, J. Electrochem. Soc. 138, No.8, (1991) 2426–2439.
    39. A.V. Lobanova, K. M. Mazaev, R. A. Talalaev, M. Leys, S. Boeykens, K. Cheng, and S.
    61
    Degroote, Effect of V/III ratio in AlN and AlGaN MOVPE. J. Crystal Growth 287 (2006)
    601-604.
    40. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and
    Mass Transfer, 6th ed., John Wiley & Sons, (2006).
    41. COMSOL Multiphysics® www.comsol.com. COMSOL AB, Stockholm, Sweden

    QR CODE
    :::