| 研究生: |
張少凡 Shao-Fan Chang |
|---|---|
| 論文名稱: |
同化策略及冰相微物理對四維變分都卜勒雷達分析系統(VDRAS)於定量降雨預報之影響研究 The influence of assimilation strategies and ice-phase microphysics on the application of a four-dimensional Variational Doppler Radar Analysis System (VDRAS) for quantitative precipitation forecasts |
| 指導教授: |
廖宇慶
Yu-Chieng Liou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 資料同化 、都卜勒雷達觀測 、定量降雨預報 |
| 外文關鍵詞: | data assimilation, Doppler radar observation, quantitative precipitation forecast |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文第一部份是利用VDRAS的一系列OSSE實驗和真實個案模擬,來探討同化策略和微物理過程對都卜勒雷達資料同化於定量降雨預報的影響。 OSSE實驗指出直接使用模式輸出且帶有錯誤天氣系統為背景場,VDRAS預報會受小尺度錯誤天氣資訊所影響,而產生不必要零星降雨。若使用平滑後的背景場則可去除小尺度錯誤訊息,以改善降雨預報。當低層無雷達觀測資料情況,在缺乏低層資料的區域,VDRAS反演出過強的下降運動和冷池。越多同化循環未必得到較佳的分析和預報。故當低層資料缺乏時,同化循環的數目須審慎選擇。OSSE實驗結果顯示兩個同化循環設計分析和預報上有相對較佳結果。微物理非線性特性隨預報時間的發展,對同化系統表現有明顯負面影響,會導引極小化過程往錯誤方向。其中回波有較徑向風顯的非線性特性。使用多個短循環的同化策略,可幫助同化系統的極小化演算法得到較佳的初始場和預報結果。真實個案方面,則是選擇2008 SoWMEX IOP#8期間的一個強降雨個案,以驗證OSSE的實驗結果。
第二部分則主要是改進VDRAS的微物理過程的研究。吾人在維持VDRAS原本的暖雨微物理架構下加入含雪和冰的冰相微物理過程。OSSE實驗結果顯示,若用原本只有暖雨過程的VDRAS同化回波,會造成分析場的雪水量嚴重被低估。有冰相過程的VDRAS同化雷達資料時,若利用探空的結冰高度用來界定被同化回波中雨和雪,則用兩個4Dvar同化循環設計較單一循環可得到較合理分析場結果。OSSE實驗和2008 SoWMEX IOP#8真實個案的降雨預報分布上,增加冰相微物理可改善VDRAS只有暖雨過程所造成降雨過強且集中現象,使得降雨範圍較為廣。目前定量降水預報比較,冰相過程則對小雨的降雨有較明顯幫助。
A series of observation system simulation experiments (OSSEs) and real case study are conducted to investigate the application of the Doppler radar data assimilation technique for numerical model quantitative precipitation forecasts (QPF). A four-dimensional Variational Doppler Radar Analysis System (VDRAS) is adopted for all experiments. The first set of OSSEs demonstrates that when the background field contains the imperfect information predicted from a mesoscale model, the incorrect convective-scale perturbations in the background can result in spurious scattered precipitation. However, a smoothing procedure can be utilized to remove the fine structures from the primitive model output to avoid this over-prediction. Results from a second set of OSSEs indicate that the lack of low-elevation data due to beam blockage could significantly alter the retrieved low-level thermal and dynamical structures when different number of data assimilation cycles is applied. These impacts could lower the rainfall forecast capability of the model. The third set of OSSEs shows that, when the rainwater is assimilated over a long assimilation window, the nonlinearity embedded in the microphysical process could lead the minimization algorithm to a wrong direction, causing a further degradation of the rainfall prediction. However, using multiple short assimilation cycles produces better minimization and forecast results than those obtained with a single long cycle. A real case experiment based on data collected during Intensive Operation Period (IOP) #8 of the 2008 Southwest Monsoon Experiment (SoWMEX) is conducted to provide a verification of the conclusions obtained from OSSEs under a realistic framework. The microphysics scheme of VDRAS is extended from warm rain process to cold rain process. It is found that the retrieved water content would be underestimated if all radar reflectivities are assumed to be in the form of warm rain. This underestimation can be improved when the cold rain process is implemented into VDRAS. The VDRAS with ice physics can provide better rainfall forecast.
Barnes, S., 1964: A technique for maximizing details in numerical map analysis. J. Appl. Meteor., 3, 395–409.
Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short term forecasting of a midlatitude convective storm by the assimilation of single–Doppler radar observations. Mon. Wea. Rev., 137, 4115–4135.
Crook, N. A., 1994: Numerical simulations initialized with radarderived winds. Part I: Simulated data experiments. Mon. Wea. Rev., 122, 1189–1203.
——, and J. D. Tuttle, 1994: Numerical simulations initialized with radar-derived winds. Part II: Forecasts of three gust-front cases. Mon. Wea. Rev., 122, 1204–1217.
——, and J. Sun, 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 forecast demonstration project, J. Atmos. Oceanic. Technol., 19, 888-898.
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46, 3077–3107.
Fabry, F. and J. Sun, 2010: For How Long Should What Data Be Assimilated for the Mesoscale Forecasting of Convection and Why? Part I: On the Propagation of Initial Condition Errors and Their Implications for Data Assimilation. Mon. Wea. Rev., 138, 242-255.
Gal-Chen, Tzvi, 1978: A Method for the Initialization of the Anelastic Equations: Implications for Matching Models with Observations. Mon. Wea. Rev., 106, 587–606.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 132, 103–120.
Hu, M., M. Xue, J. Gao, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.
——,——, ——, and ——, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.
Kessler, E., 1969: On the Distribution and Continuity of Water Substancein Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.
Klemp, Joseph B., Robert B. Wilhelmson, 1978: The Simulation of Three- Dimensional Convective Storm Dynamics. J. Atmos. Sci., 35, 1070–1096.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245.
——, M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246–2260.
Li, Y., X. Wang and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF ensemble-3DVAR hybrid system for the prediction of hurricane Ike (2008) . Mon. Wea. Rev. , in press.
Lin, Ying, Peter S. Ray, Kenneth W. Johnson, 1993: Initialization of a Modeled Convective Storm Using Doppler Radar–derived Fields. Mon. Wea. Rev., 121, 2757–2775.
Miller, M. J., and R. P. Pearce, 1974: A three-dimentional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 100, 133–154.
Pan, X., X. Tian, X. Li, Z. Xie, A. Shao, and C. Lu (2012), Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method, J. Geophys. Res., 117, D17113, doi:10.1029/2012JD017684.
Rogers, E., T. L. Black, D. G. Deaver, G. J. DiMego, Q. Zhao, M. Baldwin, N. W. Junker, and Y. Lin, 1996: Changes to the operational ‘‘early’’Eta analysis/forecast systemat theNational Centers for Environmental Prediction. Wea. Forecasting, 11, 391–412.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.
Smith, P. L., Jr., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation processes. J. Appl. Meteor., 14, 1156–1165.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
——, and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using WSR-88D data, Wea. Forecasting, 16, 117-132.
——, 2005: Initialization and Numerical Forecasting of a Supercell Storm Observed during STEPS, Mon. Wea. Rev., 133, 793–813.
——, and Y. Zhang, 2008: Analysis and Prediction of a Squall Line Observed during IHOP Using Multiple WSR-88D Observations, Mon. Wea. Rev., 136, 2364–2388.
——, M. Chen and Y. Wang, 2010 : Frequent-updating Analysis System Based on Radar, Surface, and Mesoscale Model Data for the Beijing 2008 Forecast Demonstration Project, Wea. Forecasting, 25, 1715-1735.
Sun J, Wang H. 2012: Radar data assimilation with WRF 4D-Var: Part II. Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev. doi:10.1175/MWR-D-12-00169.1, in press.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation forecasting using doppler radar data, a cloud model with adjoint, and the weather research and forecasting model: real case studies during sowmex in taiwan. Wea. Forecasting, 26, 975–992.
Takuya K, Kuroda T, Seko H, Saito K. 2011. A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139: 1911–1931.
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807.
Tripoli, G. J., and W. R. Cotton, 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.
Wang H, Sun J, Zhang X, Huang X, Auligne T. 2013. Radar data assimilation with WRF 4D-Var: Part I. System development and preliminary testing. Mon. Wea. Rev. doi:10.1175/MWR-D-12- 00168.1, in press.
Weisman, M. L. and J.B. Klemp, 1982: The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon. Wea. Rev., 110, 504-520.
——, and R. Rotunno, 2004: “Theory for Strong Long-Lived Squall Lines” Revisited. J. Atmos. Sci., 61, 361-382.
Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454–476.
Wu, Bing, Johannes Verlinde, Juanzhen Sun, 2000: Dynamical and Microphysical Retrievals from Doppler Radar Observations of a Deep Convective Cloud. J. Atmos. Sci., 57, 262–283.
Xiao, Q., and J. Sun, 2007: Multiple radar data assimilation and short-range QPF of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381–3404.
——, Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788.
Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square rootKalman filter for evaluating impact of data fromradar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23, 46–66.
Zhao, Q., J. Cook, Q. Xu, and P. R. Harasti, 2006: Using radar wind observations to improve mesoscale numerical weather prediction. Wea. Forecasting, 21, 502–522.